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Abstract

This paper studies the problem of securing infor-
mation release in dynamic languages. We propose (i)
an intuitive framework for information-release policies
expressing both what can be released by an application
and where in the code this release may take place and
(ii) tight and modular enforcement by hybrid mecha-
nisms that combine monitoring with on-the-fly static
analysis for a language with dynamic code evaluation
and communication primitives. The policy framework
and enforcement mechanisms support both termination-
sensitive and insensitive security policies.

1. Introduction

As computing systems are becoming increasingly
extensible and interconnected, the challenge of securing
applications written in dynamic and distributed lan-
guages is becoming increasingly important. This chal-
lenge is particularly pressing for web applications that
critically rely on dynamism and distribution.

Information-flow tracking in web applications pro-
vides a viable, and increasingly popular, alternative
for enforcing end-to-end confidentiality and integrity.
Information-flow tracking is ubiquitous in several re-
cent practical approaches to web security. To give a
few recent examples, these approaches include server-
side mechanisms (e.g., [19], [10]), client-side mecha-
nisms for JavaScript (e.g., [37]) and JVM (e.g., [8]), as
well as mechanisms that combine protection for servers
and clients [9]. However, while promising, this line of
work lacks soundness guarantees and sound support for
information-release (or declassification) policies.

On the other side of the spectrum, much progress has
been made on formal reasoning about security policies
and (mostly static) enforcement [28], [30]. However,
dynamic code evaluation has been out of reach for the
mostly static techniques developed so far.

Recently, several dynamic techniques for program
security have emerged [38], [21], [32], [20]. Yet they
have two limitations: (i) they target restrictive noninter-
ference [17] policies (stipulating that there should be no

dependence of public outputs on secret inputs) and (ii)
they do not handle dynamic code evaluation.

The first limitation poses problems for practical use
because noninterference is too strong for many appli-
cations that intentionally release some secret informa-
tion [28], [30]. For example, programs that need to
release an average salary or the result of password
checking would be ruled out as insecure.

The second limitation (which is also a fundamental
limitation for static enforcement mechanisms) prevents
us from applying the technology of information-flow
sensitive languages [25], [33] to widely-used dynamic
languages. In the context of web applications, where
there are requirements on information flow control of
sensitive data, dynamic code evaluation is a popular
feature. A quick check reveals that the eval primitive
is used in nearly a quarter of the pages with embedded
JavaScript indexed by Google code search.

Clearly, there is a gap between formal, mostly
static, approaches—that lack support for dynamic
code evaluation—and practical, mostly dynamic,
approaches—that lack soundness and support for flex-
ible information-release policies. Bridging this gap is
a research program that requires a substantial research
and engineering effort. This paper obviously does not
have an ambition to do it all, but we believe it can
at least make a step in this direction: we propose an
intuitive and general framework for reasoning about
information-release policies for expressing both what
can be released by an application and where in the code
this release may take place.

The framework makes it possible to express not
only such simple information-release policies as for
password-checking and average-salary programs, but
also more complex and dynamic ones. For example,
a form-validating script should not be able to steal a
credit card number. We give a server- and a client-side
scenario as further examples:

Server-side scenario A third-party service (cf. [1])
offers users help in bidding for auctioning web sites.
The user specifies the maximum amount A he is pre-
pared to pay for the goods, and the server participates
in bidding on the user’s behalf by minimally increasing
the current bid B as long as it does not exceed what
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the user is prepared to pay. The policy for information
release from the user to the auction is to only reveal
whether A > B and nothing else about A. Both A and
B can be changed dynamically.

Client-side scenario A third-party service provides
an API for embedding maps in web pages. APIs as the
Google Maps API [2] rely on inclusion of their scripts
in trusted pages, which gives full trust to these scripts
by today’s browsers (e.g., the scripts get access to the
entire document, including possibly sensitive data). But
our approach allows limiting the trust by the following
policy: release the coordinates of the objects to be
displayed to the third party but allow no other user data
to be leaked. Note that dynamic code generation needs
to be addressed by enforcement in this scenario: new
code for map rendering is requested and run in response
to user events such as moving the map [2].

Not only is the policy framework general, but also
tightly enforceable: we present a permissive yet sound
hybrid of monitoring and on-the-fly static analysis that
enforces security for a language with web-style primi-
tives for dynamic code evaluation and communication.

2. Security specification

In this section, we state our assumptions on the se-
mantics of programs and present a security specification
for information release.

Semantics Without loss of generality, we assume a
two-element security lattice Lev with levels L (for low,
or public) and H (for high, or secret), where L v H
and H 6v L. Assume Γ is a security environment Γ :
Vars → Lev that maps variable names Vars to security
levels Lev .

Program configurations are triples of the form cfgc =
〈c,m,E〉 where c is a command (program), m is a
memory (mapping variables to values m : Vars →
Vals), and E is a set of released expressions. The set
of released expressions E is updated every time an
expression is declassified. We assume mapping m can
be extended to expressions.

Small-step semantic transitions between configura-
tions have the form cfgc−→αcfgc′, where α is a low
event. Low events describe an attacker’s capability to
observe changes in low memory. This allows modeling
a powerful attacker and accommodates a straightfor-
ward treatment of input and output (which we present
in Section 4). Some program transitions do not generate
any low events, which, when there is need to be explicit,
we denote as ε. A distinguished form of a low event is
program termination ↓. We have:

α ::= ` |ε ` ::= (x, v) | ↓

Here (x, v) corresponds to an assignment of
value v to a low variable x. A program trace
cfgc0−→α1 . . .−→αn

cfgcn produces a sequence
of low events ~̀, where ~̀ is defined as the subsequence
of all non-empty events among α1, . . . , αn, if there
is any, and ε otherwise. This will also be denoted as
cfgc0−→~̀cfgcn.

Security condition Declassification primitives in a
program specify what information about the initial val-
ues of secret variables is disclosed and where in a pro-
gram run this declassification happens. These primitives
have the form declassify(e) for some expression e.

We treat expressions e appearing in declassify(e)
primitives as escape hatches [29] that describe what is
released. These expressions induce an indistinguisha-
bility relation on memories corresponding to what the
attacker can and cannot distinguish given that the ex-
pressions have been released: Given a set of escape
hatches E, two memories m1 and m2 are indistinguish-
able by E, written m1 I(E) m2, if the memories
agree on all expressions from the escape-hatch set:
∀e ∈ E . m1(e) = m2(e). For example, if the only
escape hatch is the average of two high variables h and
h′, then the average value is visible to the attacker, but
memories that agree on (h+h′)/2 are indistinguishable
by the attacker. If the set of escape hatches is empty,
then nothing can be learned by the attacker: the indis-
tinguishability relation relates all memories.

Our security condition is based on reasoning about
the attacker’s knowledge about the initial values of high
variables (cf. [15], [4], [6]). Initially, this knowledge
corresponds to all possible values. As the computation
goes along, the knowledge can be refined, i.e., the
attacker may learn that some values are not possible.
The essence of our condition is that at any given point
the attacker may not learn more than what is allowed
by the escape-hatch expressions that have been released
so far. A useful feature of the condition is that it is
defined per individual run of a program, which makes
it amenable for runtime monitoring.

Given a trace t = cfgc0−→~̀cfgcn that produces
a sequence of low events ~̀, assume m is the initial
memory in cfgc0, and E is the set of escape hatches
accumulated in the last configuration cfgcn. Assume
mL denotes the low projection of memory m. Define
the release policy p(m,E) as the set of all memories
that agree on the low variables with m and that are
indistinguishable fromm by the escape hatches fromE:

p(m,E) = {m′ |m′L = mL ∧m′ I(E) m}

The release policy describes what is visible by the
attacker with access to the initial values of low variables
and escape-hatch expressions. The release policy can be
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Fig. 1. Security condition

equivalently defined as p(m,E) = {m′ | m′ I(E ∪
ΓL) m}, where ΓL is the set of low variables.

The attacker can gain knowledge by observing low
events. Given a command c, the low part iL of the
initial memory i, and a sequence of low events ~̀, the
knowledge is the set of memories that agree with i on
the low variables and can lead to generating ~̀:
k(c, iL, ~̀) = {m |mL = iL∧〈c,m, ∅〉−→~̀〈c′,m′, E′〉}

The condition that the attacker may not learn more
than what is allowed by the escape-hatch expressions
can be specified by a straightforward set inclusion of the
knowledge allowed by the policy into the knowledge the
attacker may derive at a given step. Figure 1 illustrates
how the attacker’s knowledge can be refined over time.
At each event of a sequence ~̀, the attacker may gain
some knowledge. This happens at events `2, `4, and `5
in the figure, when the solid line drops to a more refined
knowledge. The gray area corresponds to the evolution
of the release policy over time. As the set of escape-
hatch expressions grows, the policy allows the attacker
to distinguish more and more data. The key condition
is that the attacker may not learn more than what is
allowed by the policy: the solid line may never cross
into the gray area.

Definition 1. (TERMINATION-SENSITIVE SECURITY).
A program c is secure with respect to a sequence
of low events ~̀ and initial low memory iL, denoted
TSec(c, iL, ~̀), if for all memories m ∈ k(c, iL, ~̀) that
produce ~̀we have:

∀i . 1 ≤ i ≤ n . p(m,Ei) ⊆ k(c,mL, ~̀i)

where ~̀i is the i-prefix of ~̀, ~̀= ~̀
n for some n, andEi is

extracted from the configuration that generated the last
event in ~̀i.

The above definition is simple yet powerful. It allows
runs of the following program:

l := declassify(h)

Although the attacker can refine the knowledge about h
to a single value, this refinement is allowed by the pol-
icy because it only allows memories that agree on h. We
have p(m, {h}) = {m′ |m′L = mL∧m′ I({h})m} =
{m′ |m′L = mL ∧m′(h) = m(h)}, which is included
in (in fact, equal to) k(c,mL, (l,m(h))).

Consider the following laundering attack. The
escape-hatch expression is h (e.g., storing the expiry
date of a credit card), but it is the initial value of h′

(e.g., storing the credit card number) that is leaked:

h := h′; l := declassify(h)

Here, the attacker may learn the initial value of h′. How-
ever, this is not allowed by the policy, which demands
agreement on h but allows memories with all possible
values for h′. We have p(m, {h}) = {m′ |m′L = mL ∧
m′ I({h}) m} = {m′ |m′L = mL ∧m′(h) = m(h)}.
Take memory m′′ ∈ p(m, {h}) so that m′′(h′) 6=
m(h′). But m′′ 6∈ k(c,mL, (l,m(h′))) by the choice of
m′′, and thus p(m, {h}) 6⊆ k(c,mL, (l,m(h))). There-
fore, such runs are rightfully rejected by the definition.

Note that a simple approach to avoid possibilities of
this kind of laundering would be do force the program-
mer to declare escape hatches in a global declaration
block and “activate” them by declassification, along the
lines of:

let hatch ha = h; . . . in . . . l := declassify(ha); . . .

where ha is an immutable high variable. However, this
solution does not scale well, when the escape hatches
depend on dynamically received input (subject of Sec-
tion 4).

Consider an example where the escape-hatch expres-
sion is the average avg(h, h′) of two variables h and h′:

t := h′;h′ := h;h := t; l := declassify(avg(h, h′))

Although the variables h and h′ are swapped, the value
of the expression (h+h′)/2 at the declassification time
equals its initial value. Therefore, the inclusion of the
policy into the knowledge set holds, and this program is
accepted by the definition.

The above security definition is termination-sensitive
(cf. [28]): from seeing a low event in a program with
possible divergence, the attacker may learn some sen-
sitive information. For example, when running the pro-
gram (while h do skip); l := 5, if the attacker observes
that l has been assigned 5, the attacker learns that h was
0. Sometimes, a weaker security definition is desirable,
which accepts the program as secure on the grounds
that leaks via termination are hard to exploit. Thus,
we also present a termination-insensitive definition.
Askarov et al. [3] provide a formal justification for
a declassification-free version of this definition: if a
program satisfies the definition, then the attacker may
not learn the secret in polynomial running time in the
size of the secret; and, for uniformly-distributed secrets,
the probability of guessing the secret in polynomial
running time is negligible.
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We cast insensitivity to (non)termination by allowing
new knowledge when observing the next output, but
only as much as can be learned from the fact that
there is some next output. This knowledge, dubbed
progress knowledge, can be expressed as the union of
all knowledge sets that correspond to extending a low
trace ~̀with next output:

⋃
`′ k(c,mL, ~̀̀

′).
With this notion at hand, we have a way of ignoring

leaks due to nontermination at each step. We refer to this
notion as progress-insensitive security or, for the sake of
compatibility with the declassification-free version [3],
termination-insensitive security.

Definition 2. (TERMINATION-INSENSITIVE SECU-
RITY). A program c is secure with respect to a sequence
of low events ~̀ and initial low memory iL, denoted
TISec(c, iL, ~̀), if for all memories m ∈ k(c, iL, ~̀) that
produce ~̀, we have: ∀i . 1 ≤ i ≤ n .

p(m,Ei) ∩
⋃
`′

k(c,mL, ~̀i−1`
′) ⊆ k(c,mL, ~̀i)

where ~̀i is the i-prefix of ~̀, ~̀= ~̀
n for some n, andEi is

extracted from the configuration that generated the last
event in ~̀i.

As intended, runs of the program
(while h do skip); l := 5 are accepted by Definition 2.
Memories that lead to diverging traces are ruled out by
the progress knowledge; hence, there is no refinement
on observing that 5 has been assigned to l. On the other
hand, runs of the program (while h do skip); l := h
are rejected by Definition 2. The progress knowledge
allows refinement of the loop guard h = 0, but the low
assignment gives the exact value of h which is much
more precise than what progress knowledge allows.

3. Enforcement

This section shows how to enforce security policies
by a hybrid of monitoring and on-the-fly static analysis
for a language with dynamic code evaluation. Because
termination-insensitive enforcement is simpler (it re-
quires no major static analysis), we present it first.

Language We consider a simple imperative lan-
guage with an eval(s) primitive for dynamic code eval-
uation of string s. Figure 7 in Appendix B displays the
syntax of the language. Expressions consist of constant
integers n and strings s, variables x, and composite
expressions e op e, where op ranges over total opera-
tions. For simplicity, we assume declassifications have
the form x := declassify(e) for some low variable x
and declassification-free expression e.

The semantics of expressions extends mapping m
from variables to arbitrary expressions as follows:

m(e1 op e2) = m(e1) op m(e2). As before, we write
m(e) = v whenever expression e evaluates to value v
(either integer n or string s) under memory m.

The semantics of commands is similar to standard
small-step semantics (see Figure 8 in Appendix B for
the details). Low events ` = (x, v) are generated by
assignments (with and without declassification) when-
ever the assigned variable x is low. Value v is the result
of evaluating the expression on the right-hand side of
the assignment in the current memory. The rule for
declassification includes the underlying expression in
the escape-hatch set. Dynamic code evaluation of an
expression e succeeds when e evaluates to a string in
the current memory, and this string can be successfully
parsed. (Failing to parse the string would result in a
dynamic error in a realistic language, but we represent
such an event by a stuck state for simplicity: turning
the execution into the stuck state can be achieved in the
monitor anyway.) We assume that program termination
event ↓ is generated when the program reaches terminal
configuration 〈stop,m,E〉 for some m and E and no
other transitions are possible.

We also equip the semantics with monitor events β
that represent the interface of the execution with a mon-
itor. The executions of a configuration and the monitor
are synchronized via these events.

We instantiate monitor events β for our language as
follows. Event nop signals that the program performs a
skip. Event a(x, e) records that the program assigns
the value of e in the current memory to variable x.
Event d(x, e,m) reports a declassification of expression
e in the current memory m into variable x. Sequential
composition propagates monitor events similarly to low
events. Event b(e, c1; c2) indicates that the program
branches on expression e and is about to enter one of
the branches c1 or c2. This information is important
for the static analysis part of the monitor, as we ex-
plain later. When the program either enters or skips a
while loop with guard e or when it runs eval(e) event
we(e) is triggered. In all three cases it is important
to communicate to the monitor the security level of
expression e: when it is high, then implicit flows via
loops and via dynamic code generation (exemplified
below) need to be prevented by the monitor. Finally,
event f is generated when the structure block of a
conditional, loop, or eval has finished evaluation.

Termination-insensitive enforcement The se-
mantics of the monitor is reported in Figure 2. A mon-
itor configuration has the form cfgm = 〈i, st〉. The
monitor is parameterized in the initial memory i and
contains a context stack [16], [21], a stack of security
levels st, which is initially empty (denoted ε). The stack
helps tracking control flow (cf. implicit flows below).
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〈i, st〉 nop−→ 〈i, st〉
lev(e) v Γ(x) lev(st) v Γ(x)

〈i, st〉 a(x,e)−→ 〈i, st〉

〈i, hd :st〉 f−→ 〈i, st〉
m(e) = i(e) lev(st) v Γ(x)

〈i, st〉 d(x,e,m)−→ 〈i, st〉

〈i, st〉 b(e,c)−→ 〈i, lev(e) : st〉 〈i, st〉 we(e)−→ 〈i, lev(e) : st〉

Fig. 2. Termination-insensitive enforcement

When reaching an if e . . . , while e . . . , or eval(s),
the security level of e, or s, respectively, is pushed
onto the stack. When reaching an end instruction that
closes the scope of one of the above commands, the
topmost security level is popped from the stack. Based
on the events generated by the program, the monitor
may stop its execution or allow it, while keeping track
of the context stack. Assume function lev(e) returns the
highest level of a variable encountered in expression e.
Similarly, lev(st) returns H if there is an H element in
stack st, and L otherwise.

Event nop (that originates from a skip) is always
accepted without changes in the monitor state. Event
a(x, e) (that originates from an assignment) is accepted
without changes in the monitor state but with two con-
ditions: (i) that the security level of expression e is no
greater than the security level of variable x and (ii) that
the highest level of the context stack is no greater than
the security level of variable x. The former prevents
explicit flows of the form l := h, whereas the latter
prevents implicit [14] flows of the form if h then l :=
1 else l := 0, where depending on the high guard, the
execution of the program leads to different low events.

Events b(e, c) and we(e) result in pushing the se-
curity level of e onto the stack of the monitor. This
is a part of implicit-flow prevention: runs of program
if h then l := 1 else l := 0 are stopped before per-
forming an assignment l because the level of the stack is
high when reaching the execution the assignment. The
stack structure avoids overrestrictive enforcement. For
example, runs of program (if h then h := 1 else h :=
0); l := 1 are allowed. This is because by the time the
assignment to l is reached, the execution has left the
high context: the high security level has been popped
from the stack in response to event f , which the pro-
gram generates on exiting the if.

We have seen that runs of programs like
if h then l := 1 else l := 0 are rejected
by the monitor. But what about a program like
if h then l := 1 else skip, a common example for
illustrating that dynamic information-flow enforcement
is delicate? If h is non-zero, the monitor stops the

execution. However, if h is 0, the program proceeds
normally. Are we accepting an insecure program? It
turns out that the slight difference between unmonitored
and monitored runs (stopping in case h is non-zero) is
sufficient for termination-insensitive security. In effect,
the monitor prevents implicit flows by collapsing the
implicit-flow channel into the termination channel;
it does not introduce any more bandwidth than the
termination channel already permits. Indeed, implicit
flows in unmonitored runs can be magnified by a loop
so that secrets can be leaked bit-by-bit in the linear
time of the secret. On the other hand, implicit flows in
monitored runs cannot be magnified because execution
is stopped whenever it attempts entering a branch with
a public side effect. For example, one implication
for uniformly-distributed secrets is that they cannot
be leaked on the termination channel in polynomial
time [3].

Information release is controlled by the rule for the
declassification event d(x, e,m). Similarly to the rule
for assignment, this rule prevents implicit flows. Ex-
plicit flows from an escape-hatch expression to a low
variable are allowed, but only if the value of the escape-
hatch expression is the same as it was in the initial
memory. This prevents laundering because at the time
of declassification we only release what is described by
the escape-hatch expression with respect to the initial
memory and nothing else. Revisiting the examples of
Section 2, runs of program:

l := declassify(h)

are accepted by the monitor because the value of the de-
classified expression h at the time of declassification is
the same as initially. On the other hand, the laundering
attack:

h := h′; l := declassify(h)

where h′ is leaked instead of h, is prevented. Suppose
for the initial memory i we have i(h) = 2 and i(h′) =
3. Then for memory m, which is obtained after the
first assignment, we have m(h) = m(h′) = 3. Thus,
check m(h) = i(h) fails, and therefore the dangerous
declassification is disallowed by the monitor.

The monitor prevents leaks due to dynamic code
evaluation. For example, consider program:

(if h then s := "l := 1" else s := "l := 0"); eval(s)

where s is a high string. Clearly, this program is inse-
cure, as the information about variable h is encoded
in string s, which, when evaluated, reflects it in the
generated low events. Because s is high, the monitor
pushes a high security level in the context stack before
executing the assignment. Consequently, assignment to
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a low variable in a context with a high level will be
prevented by the monitor.

Note that getting stuck while parsing a high string
or evaluating in a high context is not a problem in
the same way as diverging in high context is not a
problem because abnormal termination is ignored in the
same way as nontermination is ignored by termination-
insensitive security.

Thanks to the modularity of our approach, the seman-
tics of monitored execution boils down to a single rule:

cfgc
β−→αcfgc′ cfgm

β−→ cfgm ′

(cfgc, cfgm)−→α(cfgc′, cfgm ′)

The rule ensures that a program configuration is allowed
to perform a step with monitor event β only if the
monitor accepts event β. Stopping the execution (or not)
is the only channel for information flow in the direction
from the monitor to the attacker. Note that no attacker-
observable event is generated when the monitor has
stopped execution under this rule. However, this choice
is not fundamental: traces with a special abnormal
termination event at the next step can be “ignored”
by progress knowledge in the same way as traces are
ignored if they get stuck at the next step.

In the following we let TISec(c, iL, ~̀) refer to an
execution of c monitored by a termination-insensitive
monitor, and to TSec(c, iL, ~̀) to an execution of cmon-
itored by a termination-sensitive monitor. The security
of monitored executions is guaranteed by the following
soundness result:

Proposition 1. (SOUNDNESS OF TERMINATION-IN-
SENSITIVE ENFORCEMENT). Given a program c, ini-
tial memory i, and a sequence ~̀ of low events pro-
duced by 〈c, i, ∅〉 while monitored by the termination-
insensitive monitor 〈i, ε〉, we have that c satisfies
termination-insensitive security with respect to ~̀ and
iL, that is, TISec(c, iL, ~̀).

Proofs of this and Proposition 2 follow from Proposi-
tions 3 and 4 for the more general language in Section 4.

Note that the monitor gives quite a bit of precision
compared to typical static systems: it approximates the
security condition more tightly. For example, a static
treatment of eval would most likely demand no eval
in high context (unless it is combined with dynamic se-
curity context tracking), while the monitor allows eval
in high context. In addition, the handling of declassi-
fication would be different in precision: for example, a
program where two values are swapped before releasing
their average would most likely be rejected by a static
analysis (e.g., [29]), while the monitor allows such a
program.

Termination-sensitive enforcement The monitor
above tightly enforces termination-insensitive security.
But it is not sufficient to guarantee termination-sensitive
security. For example, if the value of h is initially 0, the
execution of this program is not stopped:

while h do skip

However, the observation of a termination event teaches
the attacker that h was indeed initially 0. Furthermore,
while appropriate for termination-insensitive security,
stopping (or not) the program execution in a high
context can break termination-sensitive security. For
example, if h is initially 0, the monitor of the previous
paragraph will not stop the following program:

if h then l := 1 else skip

Again, the observation of a termination event teaches
the attacker that h was indeed initially 0. Similar prob-
lems occur when declassifying, looping, and dynami-
cally evaluating code in a high context.

This motivates a hybrid enforcement mechanism,
which utilizes on-the-fly static analysis to guarantee that
when branching on high, there are no low-observable
side effects that can increase the attacker’s knowledge.

Figure 3 shows the semantics of the hybrid mech-
anism. A monitor configuration has now the form
cfgm = 〈st, U〉, where st is the stack of security levels
(as before) andU is the set of updated variables (tracked
to prevent laundering). We define function lev(c) on
commands by assuming it returns the lowest level of
a variable assigned in c and returns H if there are
no assignments. The function gives a lower bound on
side effects produced by c. Assume noeval(c) is true
whenever no eval statements occur in c. Similarly,
noloop(c) holds if no while loops occur in c. Let func-
tion upd(c) return the set of variables assigned to in c.

As before, event nop (that originates from a skip)
is accepted without changes in the monitor state. Event
a(x, e) (that originates from an assignment) is accepted
if x is high. If x is low, then the monitor only checks
for explicit flows (implicit flows are checked statically
once a branching point is reached). In both cases set
U is extended with the variable that has been updated.
It is important to update U even for assignment to low
variables. For example, if U is not updated after the first
assignment when running the program:

l := 1; l := declassify(h ∗ l)

when l is 0 initially, then h would be allowed to leak
although it is not allowed by the escape hatch.

Recall that event b(e, c) indicates that the program
branches on expression e and program c contains both
branches. If guard e is high and program c contains
assignments to low variables, then there is a risk of
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an implicit flow. Therefore, the monitor performs static
analysis of c by computing the lower bound lev(c) on
the side effects of c. The execution is allowed to enter
a high context only if there are no low assignments
in the branches, i.e., lev(e) v lev(c). Compared to
the permissive treatment of eval by the termination-
insensitive monitor, the termination-sensitive monitor
needs to be more conservative about eval in sensitive
context. To prevent divergence/abnormal termination
in sensitive context, we disallow eval in branches
of conditionals with high guards. Similar restrictions
are placed on loops, as is standard [39]. The rule for
branching on high data ensures that there are no loops,
declassifications, or eval statements in the branches.
In addition, before branching on high data, the rule
records all variables that can possibly be updated in
both branches in the set U ′. This set is passed along
in the updated monitor configuration, preventing fu-
ture declassification of variables that could possibly
be updated in high context. On the other hand, when
branching on low data, the set of updated variables
need not be changed because updates in low context are
treated by the rule a(x, e) as described above. In this
case, we simply let U ′ = ∅.

The treatment of declassification is another part of
the monitor that relies on static analysis. The simple
mechanism of the termination-insensitive monitor is not
sufficient for termination-sensitive security. Recall the
laundering attack:

h := h′; l := declassify(h)

The progress-insensitive monitor rejects declassifica-
tion attempts by most runs of this program. However,
if the attacker gets lucky and h and h′ were the same
initially, then the monitor allows the execution. By
observing successful declassification in this program,
the attacker can learn information about h′, and not only
about h as was intended. While we can argue along the
lines of [3] that the impact of this attack is limited, we
also have a solution that provides protection from this
kind of attack. This solution corresponds to a dynamic
version of the type system for delimited information
release [29]. We keep track of a set U of variables that
might have been updated and make sure that at each de-
classification point, no updated variables are involved in
declassified expressions. The latter requirement appears
in the rule for the declassification event d(x, e,m). The
variables vars(e) of the declassified expression e must
not have been updated: vars(e) ∩ U = ∅.

The rule for event we(e) disallows loops with high
guards [39] as well as eval of high strings.

The security of the hybrid mechanism is assured by
the following soundness result:

〈st, U〉 nop−→ 〈st, U〉 〈hd :st, U〉 f−→ 〈st, U〉

lev(st) = L =⇒ lev(e) v lev(x)

〈st, U〉 a(x,e)−→ 〈st, U ∪ {x}〉

lev(e) v lev(c) lev(e) = L =⇒ U ′ = ∅
lev(e) = H =⇒ noeval(c) ∧ noloop(c) ∧ U ′ = upd(c)

〈st, U〉 b(e,c)−→ 〈lev(e) : st, U ∪ U ′〉

vars(e) ∩ U = ∅

〈st, U〉 d(x,e,m)−→ 〈st, U ∪ {x}〉

lev(e) = L

〈st, U〉 we(e)−→ 〈L : st, U〉

Fig. 3. Termination-sensitive enforcement

Proposition 2. (SOUNDNESS OF TERMINATION-
SENSITIVE ENFORCEMENT). Given a program c, ini-
tial memory i, and a sequence ~̀ of low events produced
by 〈c, i, ∅〉 while monitored by the termination-sensitive
monitor 〈ε, ∅〉, we have that c satisfies termination-
sensitive security with respect to ~̀ and iL, that is,
TSec(c, iL, ~̀).

Compared to the termination-insensitive enforce-
ment, the termination-sensitive one needs to be more
conservative. However, it is still not as conservative as
static analysis. The difference is particularly dramatic in
the presence of communication. For example, a typical
static analysis would flatly reject useful programs that
dynamically evaluate newly received input (as in the
map scenario in Section 1). The next section introduces
communication primitives, and Section 5 discusses an
implementation for the map scenario that is accepted
by both termination-sensitive and -insensitive monitors.

4. Communication primitives
This section extends the security condition and en-

forcement from Sections 2 and 3, respectively, with
communication primitives. For simplicity, we consider
a single communication channel per security level (but
discuss a straightforward extension to multiple channels
in Appendix C).

The release policy and security conditions in Sec-
tion 2 are based on the indistinguishability of initial
memories. Applying these conditions to a system with
inputs is only partially satisfactory. One can still reason
about noninterference-like policies, but the restriction
of release policy to initial memories does not allow
declassification of expressions with variables that have
been updated by inputs.

An example of such a program is password checking,
where a user is prompted to enter a password several
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times, and after every input the program declassifies if
the user’s guess matches the secret password.

We observe that, contrary to updates, inputs introduce
fresh data into the program and, therefore, distinguish
them from ordinary updates. One could also let the
programmer control which of the inputs are treated
specially, but, for simplicity, we assume that every input
introduces fresh data.

We define a variant of indistinguishability that takes
inputs into account. In contrast to inputs, outputs are
straightforward to adapt. This is due to the intentionally
powerful attacker model, introduced in Section 2, that
allows the attacker to inspect low updates.

Semantics We introduce channels L̂ and Ĥ for
low and high communication, respectively. O’Neill et
al. [26] model interaction by strategies in their work
on termination-sensitive noninterference. But Clark and
Hunt observe [11] that it makes no difference for deter-
ministic programs whether communication is modeled
by streams or strategies; and so we model channels
as streams. Each of L̂ and Ĥ is modeled as a pair of
streams—one for input, and the other one for output:

L̂ = [LI, LO] Ĥ = [HI, HO]

Next, we keep track of the input history—with every
input we record a pair of the channel name that is read
and the variable that is updated by this input. These
pairs are stored in the input history sequence hist.
Moreover, escape hatches are now pairs of the form
(e, r) where e is, as previously, an expression that is
declassified, and r is the length of the input history at
the time of declassification.

The new configurations have the form
〈c,m,E, L̂, Ĥ, hist〉, where c and m are, as before, the
current program and memory. For simplicity, we limit
inputs from the low channel to low variables and inputs
from the high channel to high variables only.

Security condition We let the attacker observe
low communication, which is reflected in the definition
of low events:

` ::= . . . | (I, x, v) | (O, v)

(I, x, v) corresponds to an observation of low input of
the value v into the variable x. (O, v) is an observation of
low output of the value v. The attacker may learn new
information based on low observations. The attacker’s
knowledge for the extended language is:

k(c, iL, L̂, ~̀) = {(m, Ĥ) |mL = iL∧
〈c,m, ∅, L̂, Ĥ, ε〉−→~̀〈c′,m′, E′, L̂′, Ĥ ′, hist′〉}

Note that the domain of the knowledge is now a
Cartesian product of two sets: (i) the set of initial mem-
ories and (ii) the set of initial high channels. We refer

to this domain as a set of initial high environments, and
define indistinguishability relation I(E, L̂, hist) on it:

(m1, Ĥ1) I(E, L̂, hist) (m2, Ĥ2)⇔
∀(e, r) ∈ E . m

hist[r]
1 (e) = m

hist[r]
2 (e)

Here E is the set of escape hatches of the form (e, r),
where the value of r tells us how many inputs have
happened before e has been declassified. This includes
inputs at all levels. We refer to r to look up the input
history up to that point and “replay” effects of these
inputs on the initial memoriesm1 andm2, but using Ĥ1

for high input inm1, Ĥ2 for high input inm2, and L̂ for
low input in both of them. In other words, mhist[r]

j is a
memory mj with input history hist applied up to the
event number r using input values from channels L̂ and
Ĥj , for j = 1, 2.

When the set of escape hatches E is empty, this
relation relates all initial high environments. If no input
is recorded, the input channels are not essential for this
relation, and then it coincides with the simpler indis-
tinguishability relation I(E) from Section 2 (modulo
Cartesian product with the set of initial high channels).
The release policy is based on the indistinguishability:

p(m, L̂, Ĥ, E, hist) = {(m′, Ĥ ′) |mL = m′L ∧
(m, Ĥ) I(E, L̂, hist) (m′, Ĥ ′)}

As in Section 2, the security conditions specify
bounds on the attacker’s knowledge in terms of the
release policy:

Definition 3. (TERMINATION-SENSITIVE SECURI-
TY). A program c is secure with respect to a se-
quence of low events ~̀, initial low-memory iL, and
initial low-communication environment L̂, denoted
T̂Sec(c, iL, L̂, ~̀), if for all environments (m, Ĥ) ∈
k(c, iL, L̂, ~̀) that produce low events ~̀we have:

∀i . 1 ≤ i ≤ n . p(m, L̂, Ĥ, Ei, histi) ⊆ k(c,mL, L̂, ~̀i)

where ~̀i is the i-prefix of ~̀, ~̀ = ~̀
n for some n, and

Ei and histi are extracted from the configuration that
generated the last event in ~̀i.

Consider an example for illustrating the definition:

h′ := h; input(h,H); l := declassify(h); l′ := h′

Because declassification happens after the input, it
refers to the value of h that has been read from the chan-
nel H , rather than its initial value. The last assignment
gives to the attacker the knowledge about the initial
value of h, which is not what has been released by the
declassification. Therefore, this program is rejected.

We now define termination-insensitive security:
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Definition 4. (TERMINATION-INSENSITIVE SECU-
RITY). A program c is secure with respect to
a sequence of low events ~̀, initial low-memory
iL and low-communication environment L̂, denoted
T̂ISec(c, iL, L̂, `), ∀(m, Ĥ) ∈ k(c, iL, L̂, ~̀) that pro-
duce low events ~̀ we have: ∀i . 1 ≤ i ≤
n . p(m, L̂, Ĥ, Ei, histi) ∩

⋃
`′ k(c,mL, L̂, ~̀i−1`

′) ⊆
k(c,mL, L̂, ~̀i) where ~̀i is the i-prefix of ~̀, ~̀ = ~̀

n

for some n, and Ei and histi are extracted from the
configuration that generated the last event in ~̀i.

Let us consider another example program:

input(h,H); l1 := declassify(h);
if h′ then input(h,H) else skip;
l2 := declassify(h)

Given an initial environment with initial input stream
HI = 1, 2, . . . , and initial memory i where i(h′) 6= 0,
this program produces low events ~̀ = (l1, 1)(l2, 2) ↓.
We observe that for any iL and L̂ this program satisfies
neither T̂Sec(c, iL, L̂, ~̀) nor T̂ISec(c, iL, L̂, ~̀).

For the termination-sensitive condition it is sufficient
to note that with the second declassification the attacker
deduces that h′ is non-zero. But h′ is never part of
any declassification expression, and, hence, the release
policy does not place any bounds on it.

For the termination-insensitive condition we also
need to argue that permitted values for h′ (the left hand
side of ⊆ in the definition of T̂ISec) are not affected
by the progress knowledge. Indeed, termination of this
program does not depend on the value of h′.

Enforcement: language We extend the syntax
with keywords input(x, ch) and output(e, ch) where
ch is either L or H corresponding to the channel level.

The syntax for monitor events is also extended with
events in(x, v) for input and out(ch, e) for output.
Figure 4 shows monitored semantics for the extended
language with the new rule for declassification and the
rules for input and output. The new rule for declassifica-
tion now records the length of the current input history
sequence together with the escape-hatch expression.

Rules for input and output are presented separately
for every channel. When reading a value from a channel
we communicate to the monitor an intention to perform
an input and pass the name of the variable which will
store the result. If the execution is allowed, we read the
value v from the low channel and update the memory.
Moreover, we record this input in the input history
and communicate back to the monitor the value that
has been just read. This interaction with the monitor is
denoted by in(x, v) in the input rule. For the low chan-
nel we also produce a low-observable event (I, x, v)
indicating that a low input has just happened. No low
events are produced for inputs on the high channel.

m(e) = v

〈x := declassify(e),m,E, L̂, Ĥ, hist〉d(x,e,m)−→ (x,v)

〈stop,m[x 7→ v], E ∪ {(e, |hist|)}, L̂, Ĥ, hist〉

L̂ = [v : LI, LO]

〈input(x, L),m,E, L̂, Ĥ, hist〉in(x,v)−→ (I,x,v)

〈stop,m[x 7→ v], E, [LI, LO], Ĥ, (x, L) : hist〉

Ĥ = [v : HI, HO]

〈input(x,H),m,E, L̂, Ĥ, hist〉in(x,v)−→
〈stop,m[x 7→ v], E, L̂, [HI, HO], (x,H) : hist〉

m(e) = v L̂ = [LI, LO]

〈output(e, L),m,E, L̂, Ĥ, hist〉out(L,e)−→ (O,v)

〈stop,m,E, [LI, v : LO], Ĥ, hist〉

m(e) = v Ĥ = [HI, HO]

〈output(e,H),m,E, L̂, Ĥ, hist〉 nop−→
〈stop,m,E, L̂, [HI, v : HO], hist〉

Fig. 4. Extended command semantics

Semantics for outputs is similar to assignments. We
evaluate an expression and send the evaluated value
over to the corresponding channel. If the channel is low,
we also produce a low-observable output event (O, v).

The semantics for the rest of the commands can be
adapted from Figure 8 in a straightforward way asE, L̂,
Ĥ , and hist parts of the configurations are left intact.

Enforcement: monitoring Figures 5 and 6 present
modular extensions to the termination-insensitive and
termination-sensitive monitors. Monitor configurations
contain just one extra component: input context label ct,
which records if there has been an input in a high
context. We let ct = L initially. Monitoring outputs in
both monitors is similar to monitoring assignments. In
the termination-insensitive monitor, the only apparent
difference is syntactic: instead of variable names we use
channel names; and in the termination-sensitive monitor
we do not modify the set of updated variables.

The termination-insensitive monitor disallows low
input in a high context, similarly to the assignment rule.
This rule also modifies the reference memory of the
monitor, which allows declassifications of expressions
that refer to the values for variables from most recent
input. If the input happens in a high context, the monitor
updates the context input label with H .

We extend function lev(c), computing the lower
bound on side effects of c: it returns L if there are
assignments to low variables or input/output operations
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lev(st) v lev(x)

〈i, st, ct〉 in(x,v)−→ 〈i[x 7→ v′], st, lev(st) t ct〉

lev(e) v lev(ch) lev(st) v lev(ch)

〈i, st, ct〉 out(ch,e)−→ 〈i, st, ct〉

m(e) = i(e) lev(st) v lev(x) ct v lev(x)

〈i, st, ct〉 d(x,e,m)−→ 〈i, st, ct〉

Fig. 5. Extended termination-insensitive monitor

lev(st) = L =⇒ U ′ = U\{x} lev(st) = H =⇒ U ′ = U

〈st, U, ct〉 in(x,v)−→ 〈st, U ′, lev(st) t ct〉

lev(st) = L =⇒ lev(e) v lev(ch)

〈st, U, ct〉 out(ch,e)−→ 〈st, U, ct〉

vars(e) ∩ U = ∅ lev(ct) v lev(x)

〈st, U, ct〉 d(x,e,m)−→ 〈st, U ∪ {x} , ct〉

lev(e) v lev(c) lev(e) = L =⇒ U ′ = ∅
lev(e) = H =⇒ noeval(c) ∧ noloop(c) ∧ U ′ = upd(c)

∧ct′ = inputs(c)

〈st, U, ct〉 b(e,c)−→ 〈lev(e) : st, U ∪ U ′, ct t ct′〉

Fig. 6. Extended termination-sensitive monitor

on the low channel in c, and returns H otherwise. We
also extend function upd(c), computing the set of vari-
ables that are updated in c, to take inputs into account:
if there is an input into a variable in c, this variable is
included in upd(c). The termination-sensitive monitor
disallows low input in a high context thanks to the rule
for conditionals, which demands lev(c) = H in high
contexts. We let inputs(c) return H if c contains input
statements, andL otherwise. The monitor features some
flow-sensitivity: an input in a low context removes the
variable from the set U of variables that have been
assigned to. (It is not safe in a high context because the
fact that input has occurred carries some information
about the context.)

Both monitors disallow declassification if the level
of the input context label ct is H . This is neces-
sary because inputs, unlike branch/loop guards are not
lexically-bounded in their impact. This is not too re-
strictive for the examples in Section 5. More liberal
treatments of input in high context are possible at the
price of complicating the monitors.

In the monitored runs of the program:

h′ := h; input(h,H); l := declassify(h); l′ := h′

the termination-sensitive monitor always stops the exe-
cution of this program before the last assignment, thus
preventing leakage of the initial value of h.

Given an initial environment with HI = 1, 2, . . . and
i(h′) 6= 0 and the program:

input(h,H); l1 := declassify(h);
if h′ then input(h,H) else skip;
l2 := declassify(h)

both monitors accept the first declassification, but stop
the program execution before the second one. This
program satisfies neither of the security conditions:
observing the value of `2 refines knowledge about h′

which does not appear in any of the escape hatches.
Section 5 presents further examples on the differences
between the monitors.

Soundness The security of the extended monitors
is assured by these soundness results:

Proposition 3. Given a program c, initial memory i,
communication environments L̂, Ĥ and a sequence ~̀
of low events produced by 〈c, i, ∅, L̂, Ĥ, ε〉 while mon-
itored by monitor 〈i, ε, L〉, we have that c satisfies
termination-insensitive security with respect to ~̀, iL,
and L̂, that is, T̂ISec(c, iL, L̂, ~̀).

The proof can be found in Appendix E.

Proposition 4. Given a program c, initial memory i,
communication environments L̂, Ĥ , and a sequence ~̀
of low events produced by 〈c, i, ∅, L̂, Ĥ, ε〉 while mon-
itored by monitor 〈ε, ∅, L〉, we have that c satisfies
termination-sensitive security with respect to ~̀, iL, and
L̂, that is, T̂Sec(c, iL, L̂, ~̀).

The proof can be found in Appendix E.
Procedure declarations The enforcement mecha-

nism of this section can be extended to accommodate
procedure declarations. One extension is to require that
declassification of formal procedure parameters is al-
lowed if the parameters are declared read-only. This al-
lows evaluating escape hatches that involve formal pro-
cedure arguments with respect to the reference memory
by substituting the actual argument expression for the
formal argument variable.

5. Examples
We have implemented the monitors from Sections 3

and 4 for the language of the respective sections. This
section reports on experiments with the implementa-
tions that illustrate the difference between the monitors
and give a flavor of expressiveness that our model
provides. In addition, Appendix A works out the auction
bidding and dynamic code evaluation examples that we
outline in the introduction.
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Differences between monitors Recall the average
program, which illustrates the precision of the progress-
insensitive monitor:
t := h′;h′ := h;h := t; l := declassify(avg(h, h′))

The progress-insensitive monitor accepts runs of this
program because at the time of declassification the
escape hatch—the average of h and h′—evaluates to
the same value in both current and initial memories. On
the other hand, the termination-sensitive monitor stops
the execution at the declassification because the latter
involves updated variables.

Another example illustrating precision
of the progress-insensitive monitor is
if h then eval(”input(h′, H)”) else skip.
The progress-insensitive enforcement accepts this
program. Since one of the branches contains eval,
the program is stopped by the termination-sensitive
monitor before executing any of the branches.

If instead of the input from a high channel the argu-
ment of the eval above is a command with a low side
effect, e.g., input(l, L), then, provided the value of h
is non-zero, the progress-insensitive monitor stops the
execution before executing input(l, L).

Password checking Consider a password-
checking example. We use a high string variable
password and assume the rest of the variables are low.
1 input(password, H);
2 i := 0; ok := 0;
3 while i < 3 {
4 input (guess, L);
5 ok:=declassify (password == guess);
6 if ok then {i:=3} else {i:=i+1}
7 };
8 output(ok)

The password is read from high input on line 1. In
the loop body, which executes at most three times,
line 4 obtains the user’s guess. Line 5 declassifies the
result of the match, which is returned to the user on
the low channel (line 8). This program is accepted by
both monitors, preventing unintended leakage of the
password, but allowing declassification of the match
after new input.

It this example we could also read user guess and
password into byte arrays and provide an escape hatch
that would compare corresponding elements of these
arrays.

6. Related work
Monitoring Volpano [38] considers a monitor that

only checks explicit flows. Implicit flows are allowed,
and no support for declassification policies or dynamic
code evaluation is provided. Monitors by Venkatakr-
ishnan et al. [36], Le Guernic et al. [21], [20], and
Shroff et al. [32] are in the spirit of our work. However,

they address languages without dynamic code evalua-
tion and lack formal support for declassification. The
baseline policy for their soundness proofs is “batch-
job” noninterference, which does not scale to languages
with output [3]. Stopped execution is the only possible
deviation from the original semantics in this paper. But
we are not critically dependent on this choice. For ex-
ample, Le Guernic et al. [21], [20] are a bit more liberal:
their monitor may suppress or rewrite execution events.
We can similarly introduce rewriting and/or suppress-
ing of execution events to win in permissiveness (e.g.,
allowing evaluation of high strings with suppressed low
events) but to lose in the semantic transparency of the
monitor. Practical aspects of this trade-off are to be
explored. Yu et al. [40] take a description of a runtime
monitor for JavaScript as an input and implements this
monitor by instrumenting target code. Our monitored
semantics can be a starting point for such an imple-
mentation. On the other hand, our main results are
the semantic properties guaranteed by the monitored
executions, whereas Yu et al. report no such results.

Declassification Much progress has been recently
made on policies along the dimensions of declassi-
fication [30] that correspond to what information is
released, where in the systems is released, when and
by whom. Combining the dimensions remains an open
challenge [30]. We discuss approaches that, similarly
to ours, address both the what and where dimensions.
Our approach subsumes both gradual release [4] and
localized delimited release [5] policies (see Appendix D
for details). Mantel and Reinhard [22] suggest an ap-
proach for expressing both what and where of declas-
sification in a timing-sensitive setting, which involves
hard restrictions on programs to ensure secrets do not
affect the execution time. Banerjee et al. [6] use gradual
release as a starting point for combining the what and
where of declassification. However, their treatment of
what differs from ours: their policies are defined with
respect to the current, not initial state. The difference
in this view can be seen in the treatment of program
h := h′; l := declassify(h), which we interpret as
laundering (see Section 2) but they interpret as secure
since the current value of h is intended to be leaked.
Extending our framework to reason about the confiden-
tiality with respect to the current state is an intriguing
topic. The combination of what and where by Barthe
et al. [7] has similarities to the work by Banerjee et
al. [6] in that additional mechanisms need to be placed
to prevent information laundering. Neither of these
policies considers termination-insensitivity. Similarly
to noninterference enforcement, none of the approaches
to enforcing declassification handles code generation.
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On declassification and untrusted code Note that
for scenarios of untrusted code (as in the low-level part
of work by Barthe et al. [7] and in applying our work—
with or without eval—to a client-side setting), it is
important to separate the code from the declassification
policy. This is especially critical for the where aspects
of declassification because the attacker should not be
able to introduce declassifications in untrusted code.
For untrusted code, a simple solution can be to only
allow declassification upon method return (cf. [34]) and
only as long as the method matches a client-specified
signature. Ideas from admissibility[13] can also be used
to ensure that declassifications in untrusted code follow
a trusted protocol for declassification.

Secure information flow for web security On
the other side of the spectrum, there are approaches
that target realistic languages but lacking soundness
guarantees. A promising line of work by Chong et
al. on Sif [10] and SWIFT [9] accommodates secure
application programming by compilation. Programmers
develop a web application in generalized versions of
Jif [25] (an extension of Java with information-flow
tracking), which, after security type checking, is com-
piled into a web application. The source language
supports declassification (based on the decentralized
label model [24]), but not dynamic code evaluation. No
soundness guarantees are provided by this approach.
Fable [35] is a framework by Swamy et al. that en-
forces a wide range of security policies and is imple-
mented as part of the LINKS web-programming lan-
guage [12]. The framework can statically enforce tra-
ditional termination-insensitive noninterference in the
presence of references [3] and basic declassification
policies [18], but supports neither dynamic code evalua-
tion nor observable side-effects such as outputs. Several
web programming languages, such as Perl, PHP, and
Ruby, support a taint mode, which is an information-
flow tracking mechanism for integrity. The taint mode
treats input data as untrusted and propagates the taint
labels along the computation so that tainted data can-
not directly affect sensitive operations. However, this
mode does not track implicit flows. Information-flow
control as combinations of tainting and static analysis
have been suggested by, e.g., Huang et al. [19], Vogt
et al. [37] in the context of web applications, and
by Chandra and Franz [8] for JVM. However, while
promising evidence for scalability of information-flow
control, these approaches lack soundness arguments
and declassification support. The lack of soundness it-
self is sometimes the price (unsound aspects of [37] are
discussed in [27]). McCamant and Ernst [23] present a
tool that computes a quantitative bound on the amount
of information a program leaks during a run. This

approach provides a limited form of the what dimension
of declassification, where the release policy boils down
to a number of secret bits that an attacker may learn.

7. Conclusion
We have presented a framework for rich release poli-

cies and showed how to tightly enforce these policies by
hybrids of monitoring and on-the-fly static analysis for a
dynamic language with communication primitives. The
main contributions of the paper are: (i) a declassifica-
tion framework that improves and generalizes previous
approaches to the what and where dimensions of declas-
sification; (ii) a sound information-flow enforcement
mechanism for a language with dynamic code evalu-
ation; (iii) support for both termination-sensitive and
insensitive policies; and (iv) support for communication
primitives.

Our results are a step toward bridging the gap be-
tween formal approaches that lack rich policies and
language features and practical approaches that lack
soundness. These results open up new directions, which
we are pursuing in our current and future work. The
framework can be extended to integrity policies, which
is particularly interesting for e.g., mashup security and
SQL-injection prevention policies. The what and where
aspects of declassification have dual counterparts in
endorsement for integrity [31].

We have enhanced the termination-insensitive mon-
itor to handle the interaction dynamic tree structures,
such as those available via the browsers’ document
object model (DOM) API [27]. We investigate refer-
ences, dynamic objects, exceptions, and asynchronous
communication via XMLHttpRequest requests. Each
feature corresponds to its own channel for leaks. Our
approach is to focus on the most easily exploitable ones
(like implicit-flow channel in this paper) first. As a
practical study, we plan to extend our prototype to fully-
fledged JavaScript and use the case study by Vogt et
al. [37] as a starting point. Vogt et al. [37] extend the
Firefox browser with a monitor for JavaScript to prevent
flow of sensitive information (such as cookies, user
inputs, etc.) to the attacker. However, their experiments
show that it is often desirable for JavaScript code to
leak some information outside the domain of origin:
they identify 30 domains such as google-analytics.com
that should be allowed some leaks. Their solution is
to white-list these domains, and therefore allow any
leaks to these domains, opening up possibilities for
laundering. With our approach, these domains can be
integrated into a policy of Internet domains as security
levels (e.g., in a flat security lattice) with declassifi-
cation specifications of exactly what can be leaked to
which security level, avoiding information laundering.
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Appendix A.
Programming examples

Auction bidding The program implements the
server-side scenario from Section 1: a third party ser-
vice that offers incremental bidding at an auction site on
behalf of the user. We assume a variable of type int H:
bid where bid is the maximum bid provided by the user.
The rest of the variables are low.
1 input (bid, H);
2 won:=0; proceed := 1;
3 while proceed {
4 input (status, L );
5 if (status == 1) then { // we won
6 won := 1; proceed := 0
7 } else {//get updated bid from auction
8 input (current, L);
9 // read new bid from the user

10 input (bid, H);
11 proceed:=declassify(current<bid);
12 if proceed then {
13 current := current + 1;
14 output (current, L)
15 } else {}
16 }
17 };
18 output(won, H);
19 if won {output (current, H)} else {}

We start by asking the user’s maximum bid on the high
channel. The input on line 4 reads the status of the
auction from the auction site value 1 encodes that the
auction is over and won. Otherwise, there must have
been a new bid placed by someone else which we read
on line 8. The new value of the user’s bid is read on
line 10 from the high channel. Next, we declassify if
the user’s bid is higher than the current public bid. The
result of the declassification is stored in a low variable
proceed that controls the execution of the main loop. If
the user’s bid is indeed higher, the program increments
the current by a minimum value on line 13 and outputs
this values on the public channel. We finish by notifying
the user with the results of the auction on lines 18–19.
This program is accepted by both progress-insensitive
and termination-sensitive monitors.

Dynamic code evaluation This program imple-
ments the Google Maps API client-side scenario from
Section 1. The map is used to show a user-specified
location on the client’s web-page. Every time the user
enters a new location the browser loads new location-
specific code from Google’s server (a pattern actually
used by Google Maps):
1 while 1 {
2 // get location from a high channel
3 input (user_location, H);
4 // make the location public
5 ploc := declassify (user_location);
6 output(ploc, L);
7 // Get new code that redraws the map
8 input (code, L);
9 eval (code) // run the code

10 }
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We assume that the received code may not contain
declassification policies (which can be enforced by
a simple syntactic check) and let all client data be
secret. The only declassification is on line 5 which
releases the user_location variable before passing it in
the request for new code (lines 6–8). This code is
then evaluated (line 9). Again, the program is ac-
cepted by both progress-insensitive and termination-
sensitive monitors.
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e ::= n | s | x | e op e
c ::= skip | x := e | x := declassify(e) | c; c

| if e then c else c | while e do c | eval(e)

Fig. 7. Syntax

SKIP

〈skip,m,E〉 nop−→〈stop,m,E〉

ASGN-LOW
m(e) = v lev(x) = L

〈x := e,m,E〉a(x,e)−→ (x,v)〈stop,m[x 7→ v], E〉

ASGN-HIGH
m(e) = v lev(x) = H

〈x := e,m,E〉a(x,e)−→ 〈stop,m[x 7→ v], E〉

DECLASSIFY
m(e) = v

〈x := declassify(e),m,E〉d(x,e,m)−→ (x,v)〈stop,m[x 7→ v], E ∪ {e}〉

SEQ-1

〈c1,m,E〉
β−→α〈stop,m′, E′〉

〈c1; c2,m,E〉
β−→α〈c2,m′, E′〉

SEQ-2

〈c1,m,E〉
β−→α〈c′1,m′, E′〉

〈c1; c2,m,E〉
β−→α〈c′1; c2,m′, E′〉

IF-1
m(e) = n n 6= 0

〈if e then c1 else c2,m,E〉
b(e,c1;c2)−→ 〈c1; end ,m,E〉

IF-2
m(e) = 0

〈if e then c1 else c2,m,E〉
b(e,c1;c2)−→ 〈c2; end ,m,E〉

WHILE-1
m(e) = n n 6= 0

〈while e do c,m,E〉we(e)−→ 〈c; end ; while e do c,m,E〉

WHILE-2
m(e) = 0

〈while e do c,m,E〉we(e)−→ 〈end ,m,E〉

EVAL
m(e) = s parse(s) = c

〈eval(e),m,E〉we(e)−→ 〈c; end ,m,E〉

END

〈end ,m,E〉 f−→〈stop,m,E〉

Fig. 8. Command semantics

Appendix B.
Language

Figure 7 presents the syntax and Figure 8 presents the semantics of the simple language from Section 3.

Appendix C.
Multiple channels

The development from Section 4 can be easily generalized to a setting of more than two channels. Assume channels
are identified by channel names ch ∈ ChId . We tag low input and output events with channel identities:

` ::= . . . | (Ich, x, v) | (Och, v)

and define input and output environments L̂ and Ĥ as mappings from channel names to pairs of input and output
channels:

L̂ = {ch 7→ [LI, LO]}ch∈ChId Ĥ = {ch 7→ [HI, HO]}ch∈ChId

Semantic rules from Figure 4 and enforcement rules from Figures 5 and 6 are then modified to operate on extended
environments and produce tagged low events.
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Appendix D.
Relation to gradual and localized delimited release

We demonstrate that our framework subsumes two definitions from the literature: gradual release [4] and localized
delimited release [5]. One major improvement over both definitions is the treatment of termination-insensitivity. While
these definitions let the attacker observe intermediate states, they simply ignore diverging runs (as is common in
“batch-job” models). This is not satisfactory because accepted programs are allowed to leak the entire secret provided
they enter an infinite loop [6], [3]. Instead of ignoring diverging runs, definition TISec provides insensitivity to
divergence at any given step. We now discuss further relation to the gradual and localized delimited release properties.

D.1. Relation to gradual release

Gradual release is a knowledge-based condition, which only addresses the where of declassification. It ensures that
refinements of knowledge are only allowed at declassification points. It leaves unspecified what can be leaked by each
declassification.

As we point out above, the definition of gradual release operates on terminating traces. In order to establish formal
relation, we need to constrain TISec to terminating traces. For this we use the notion of initial knowledge [4], which
corresponds to all initial memories from which we can reach termination:

k(c, iL) = {m | iL = mL ∧ 〈m, c, ∅〉−→∗~̀↓〈c
′,m′, E′〉}

Using the initial knowledge, we can define batch-job style termination-insensitive knowledge k↓(c, iL, ~̀), i.e., the
initial memories whose low projection is iL and that can generate low-event sequence ~̀ as a part of a terminating trace
of program c:

k↓(c, iL, ~̀) = k(c, iL, ~̀) ∩ k(c, iL)

The gradual release definition permits changes in the knowledge only at declassification points. In our notation:

Definition 5. (GRADUAL RELEASE). A command c satisfies gradual release if for allmL and all low-event sequences
~̀
n = `1 . . . `n that are generated by c from memories whose low projection is mL where `r1 , . . . , `rm

are all
declassification events, we have for all i ∈ {1, . . . , n}:

(∀j . rj 6= i) =⇒ k↓(c,mL, ~̀i−1) = k↓(c,mL, ~̀i)

For the purpose of comparison with gradual release, we use a ↓-variant of policy p↓(c, iL, E) = p(iL, E)∩ k(c, iL)
and let TSec↓ correspond to a variant of Definition 1 where the policy and knowledge are replaced with their ↓-
versions.

While gradual release demands that the knowledge can only be refined at declassification points, TISec is more
liberal in that the knowledge can be refined even after declassification events. For example, program:

h′ := h;h := 0; l := declassify(h); l := h′

is rejected by gradual release because the attacker gains knowledge at the last assignment, which is not a declassifi-
cation event. Runs of the program are accepted by TISec because the knowledge about h (which is gained at the last
assignment) is allowed by prior declassification.

On the other hand, TISec controls what is released (which gradual release is agnostic about). Recall the laundering
attack program:

h := h′; l := declassify(h)

It is accepted by gradual release because the attacker’s knowledge changes at a declassification event. But, as we
discussed earlier, TISec rejects laundering by this program because the program allows gaining knowledge about h′,
and not about h from the declassification policy.

The following theorem establishes a formal relation. In short, if we force a declassification event to actually release
the information it declares it releases, then TISec implies gradual release. In terms of the diagram in Figure 1, this
corresponds to a gray area that fills the entire space under the solid line.
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Proposition 5. (RELATION TO GRADUAL RELEASE). Obtain T (c) from c by replacing declassification l :=
declassify(e) with l′ := declassify(eg); l := declassify(e) where l′ is a fresh variable and eg is obtained
from e by replacing each variable x with its “ghost” version xg . Then, if for all low-event sequences ~̀ that start in
a memory m and are generated by eventually terminating traces, where variables agree with their ghost versions
(∀x.m(x) = mg(x)), we have TSec↓(T (c),mL, ~̀) then T (c) satisfies gradual release.

Proof: We pick a m ∈ k↓(T (c),mL). Consider a trace started in m producing a sequence of low events ~̀n↓

〈T (c),m, ∅〉−→∗~̀
t−1
〈dt−1,mt−1, Et−1〉−→`t〈dt,mt, Et〉−→∗~̀

t+1...n↓
〈dn,mn, En〉

where `t is not a declassification event. Observe that the transformation T guarantees that the policy set is fully
included into the knowledge: ∀t 1 ≤ t ≤ n. p↓(m,Et) ⊇ k↓(T (c),mL, ~̀t). On the other hand, TSec↓(T (c),mL, ~̀)
implies that ∀t.1 ≤ t ≤ n . p↓(m,Et) ⊆ k↓(T (c),mL, ~̀t). Therefore, we obtain that ∀t.1 ≤ t ≤ n . p↓(m,Et) =
k↓(T (c),mL, ~̀t).

In particular, p↓(m,Et−1) = k↓(T (c),mL, ~̀t−1) and p↓(m,Et) = k↓(T (c),mL, ~̀t). If `t is not a declassification
event then Et−1 = Et, and hence k↓(T (c),mL, ~̀t−1) = k↓(T (c),mL, ~̀t), which implies that T (c) satisfies gradual
release.

D.2. Relation to localized delimited release

The localized delimited release definition addresses both what is declassified and where it is declassified. Not only
TISec provides an adequate treatment of termination-insensitivity (as discussed above), but also breaks away from
unnecessary conservativeness of localized delimited release.

Memories m1 and m2 are low-equivalent, written m1 =L m2, if they agree on the low variables. We recall
the definition of localized delimited release [5] adapted to the semantics with low events. First we define an
indistinguishability on configurations via a bisimulation relation:

Definition 6. (LOW BISIMULATION). Given memories i1 and i2 a symmetric relation Ri1,i2 on configurations is an
i1, i2-low bisimulation if, for all c1, c2,m1,m2, E1, E2, ~̀1, and ~̀2, we have (i) both 〈c1,m1, E1〉 and 〈c2,m2, E2〉
terminate and (ii) 〈c1,m1, E1〉 Ri1,i2 〈c2,m2, E2〉 then

1) i1 I(E1) i2 if and only if i1 I(E2) i2, and
2) if i1 I(E1) i2 then (i)m1 =L m2 and (ii) if 〈c1,m1, E1〉−→α 〈c′1,m′1, E′1〉 then 〈c2,m2, E2〉−→∗α〈c′2,m′2, E′2〉

and also 〈c′1,m′1, E′1〉 Ri1,i2 〈c′2,m′2, E′2〉 for some c′2, m′2, and E′2.
Two configurations cfg1 and cfg2 are i1, i2-low-bisimilar (written cfg1 ∼i1,i2 cfg2) if there exists an i1, i2-low
bisimulation that relates them.

Localized delimited release for a given program demands indistinguishability of any two initial configurations for
the program with low-equivalent memories:

Definition 7. (LOCALIZED DELIMITED RELEASE). A command c satisfies localized delimited release with low events
if for all m1 and m2 such that m1 =L m2 we have 〈c,m1, ∅〉 ∼m1,m2 〈c,m2, ∅〉.

We state the main formal result of this section:

Proposition 6. (RELATION TO LOCALIZED DELIMITED RELEASE). If c satisfies localized delimited release then for
all low-memories iL and low-event sequences ~̀ generated by eventually terminating traces, we have TSec↓(c, iL, ~̀).

Proof: Consider a terminating trace t of a program c0 starting with an initial memory i and producing a sequence
of low events ~̀:

〈i, c0, ∅〉−→∗~̀〈m′, c′, E〉

We know that c0 satisfies localized delimited release and we need to show that p↓(i, E) ⊆ k↓(c0, iL, ~̀). For this we
pick m′ ∈ p↓(i, E) and we aim to prove that m′ ∈ k↓(c0, iL, ~̀). Since by definition p↓(i, E) contains only memories
that lead to terminating configurations, we know that there exists a terminating trace

〈c0,m′, ∅〉−→∗~̀′′〈c′′,m′′, E′′〉.
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We have to show that ~̀ can be a subsequence of ~̀′′, i.e. it can be produced by a subtrace of the above trace. To show
that such subtrace exists we proceed by induction on the length of ~̀. We also prove and use that pairs of configurations
that yield low events of the same length (up to the length of ~̀) when started in the memories i and m′ respectively are
related by i,m′-low bisimulation.
• Base case. ~̀ = ε. In this case 〈c0,m′, ∅〉−→0

ε〈c0,m′, ∅〉. Moreover, since c0 satisfies Localized Delimited
Release, we have that 〈c0, i, ∅〉 ∼i,m′ 〈c0,m′, ∅〉.

• Induction step. ~̀= ~̀α. We assume the induction hypothesis for ~̀:

〈c0, i, ∅〉−→∗~̀〈c1,m1, E1〉

〈c0,m′, ∅〉−→∗~̀〈c2,m2, E2〉

and 〈c1,m1, E1〉 ∼i,m′ 〈c2,m2, E2〉. The latter implies that i (E1) ′ iff i I(E2) m′. We also know that since
m′ ∈ p↓(i, E) it holds that i I(E) m′, and since E1 ⊆ E it holds that i I(E1) m′. Then by item 2(ii) of
Definition 6 when

〈c1,m1, E1〉−→α〈c3,m3, E3〉

then
〈c2,m2, E2〉−→∗α〈c4,m4, E4〉

such that 〈c3,m3, E3〉 ∼i,m′ 〈c4,m4, E4〉.

Because localized delimited release also tracks both what and where of declassification, the examples from
Section D.1 behave in the same way for TISec and localized delimited release. However, we show that localized
delimited release is more restrictive than TISec. Recall that localized delimited release implies TSec↓(c, iL, ~̀) for all
low-memories iL and low-event sequences ~̀generated by eventually terminating traces by Proposition 6. The converse
of this proposition does not hold. The reason is an unnecessary conservativeness of localized delimited release, which
we illustrate in the following example:

h′ := 0; if h then l := declassify(h′) else l := 0

This program is intuitively secure because the final value of l is always 0. However, this program is rejected by
localized delimited release because it insists that the indistinguishability of the initial memory by the escape-hatch set
is invariant (condition 1 in Definition 6). This anomaly breaks the monotonicity of release [30] principle for localized
delimited release. However, although the policy can be modified, the knowledge is always unchanged. Thus, the set
inclusion of TISec holds for all runs of the program. This shows that the converse of Proposition 6 does not hold.

Appendix E.
Proofs for Extended Language

The following two sections present proofs of termination-insensitive and termination-sensitive security. Since the
extended language presented in Section 4 fully subsumes the simple language of Section 2 we limit the presentation
to extended language only. We state the key lemmas and show proofs of propositions 3 and 4.

The proof of Proposition 3 is given in Appendix F and the proof of Proposition 4 is given in Appendix G.

We refer to termination-insensitive monitor as ι and to termination-sensitive monitor as σ. We assume that
attacker knows monitor used for enforcement, and parameterize our definition of knowledge with it. We use notation
kµ(c, iL, ~̀) to be explicit that transitions that generate the low events are monitored. We use notation k(c, iL, ~̀) when
the monitored semantics is obvious from the context.

E.1. Input histories revisited

In this paragraph we give formal definition of input histories and indistinguishability relation informally defined
in Section 4. For this, we introduce function memupd(m, L̂, Ĥ, hist) of four arguments that defines an update of
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memory m from the input streams L̂ and Ĥ , using input recorded in the input history hist. As one can see from the
definition of this function, shown on Figure 9, memory update replays input history recorded in hist.

Definition 8 (Indistinguishability of initial high environments).

(m1, Ĥ1) I(E, L̂, hist) (m2, Ĥ2)⇔ ∀(e, r) ∈ E . m
hist[r]
1 (e) = m

hist[r]
2 (e)

where

• hist = (chn, xn) : (chn−1, xn−1) : . . . : (ch1, x1),
• r ≤ n,
• hist[r] = (chr, xr) : (chr−1, xr−1) : . . . : (ch1, x1)
• m

hist[r]
j = memupd(m, L̂, Ĥj , hist[r]) for j = 1, 2

Definition 9 (Low-consistency of input histories).
• We say that an input history hist contains no explicit flows if none of the entries in hist are of the form (x, L)

such that lev(x) = H .
• Low-projection of an input history hist is a sub-sequence of it denoted as histL obtained by stripping off entries

of the form (x,H) from hist.
• Two input histories hist1 and hist2 are low-consistent if none of them contains explicit flows and hist1L =
hist2L.

Definition 10 (Consistent monitor configurations).
1) Two termination-insensitive monitor configurations 〈i1, st1, ct1〉 and 〈i2, st2, ct2〉 are consistent whenever

i1L = i2L and st1 = st2.
2) Two termination-sensitive monitor configurations 〈st1, U1, ct1〉 and 〈st2, U2, ct2〉 are consistent whenever U1 =

U2 and st1 = st2.

Appendix F.
Proofs for Extended Language: Termination-Insensitive Enforcement

F.1. Monitor consistency

Lemma 1 (Monitor configuration through high context). Given a trace

(〈c,m, L̂, Ĥ, E, hist〉, 〈i, st, ct〉)−→∗(〈c′,m′, L̂, Ĥ ′, E, hist′〉, 〈i′, st′, ct〉)

where

1) the context stack of the first configuration has a form st = levn . . . levk+1 : H : levk−1 . . . lev1 with levn on
the top of the stack and lev1 on the bottom of it.

2) the execution of this trace does not consume stack entries below and including levk = H

then the starting and ending reference memories are low-equal: iL = i′L.

Proof: By induction on c.

memupd(m, L̂, Ĥ, hist) = m if hist = ε

memupd(m, v : L̂, Ĥ, hist : (L, x)) = memupd(m[x 7→ v], L̂, Ĥ, hist)

memupd(m, L̂, v :Ĥ, hist : (H,x)) = memupd(m[x 7→ v], L̂, Ĥ, hist)

Fig. 9. Memory update
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Lemma 2 (Relationship between reference memory and input history). Given a trace

(〈d, i, L̂, Ĥ, ∅, ε〉, 〈i, st, L〉)−→∗~̀(〈c′,m′, L̂′, Ĥ ′, E′, hist′〉, 〈i′, st′, ct′〉)
−→∗~̀′(〈c′′,m′′, L̂′′, Ĥ ′′, E′′, hist′′〉, 〈i′′, st′′, ct′′〉)

where we have that
• i′ = memupd(i, L̂, Ĥ, hist′)

then also
• i′′ = memupd(i, L̂, Ĥ, hist′′)

Proof: By induction on the length of the trace starting from c′.

F.2. Sequential composition

This section contains a series of lemmas exploring properties of sequential composition.

Lemma 3. Given ι1 and ι2 that are
1) two consistent termination-insensitive monitor configurations such that
2) both ι1 and ι2 are faithful with respect to the same source program configuration and two final configurations
〈ca; cb,m1, L̂1, Ĥ1, E, hist1〉 and 〈ca; cb,m2, L̂2, Ĥ2, E, hist2〉 respectively, where

3) m1L = m2L, hist1L = hist2L
4) and we know of two transition sequences

(〈ca; cb,m1, L̂, Ĥ1, E, hist1〉, ι1)−→∗(〈cb,m′1, L̂, Ĥ ′1, E, hist′1〉, ι′1)−→∗`1(〈c′′,m′′1 , L̂′′1 , Ĥ ′′1 , E′′1 , hist′′1〉, ι′′1)

and
(〈ca; cb,m2, L̂, Ĥ2, E, hist2〉, ι2)−→∗`2(〈d′′,m′′2 , L̂′′2 , Ĥ ′′2 , E′′2 , hist′′2〉, ι′′2)

then
1) for the second trace we have that

(〈ca; cb,m2, L̂, Ĥ2, E, hist2〉, ι2)−→∗(〈cb,m′2, L̂, Ĥ ′2, E, hist′2〉, ι′2)−→∗`2(〈d′′,m′′2 , L̂′′2 , Ĥ ′′2 , E′′2 , hist′′2〉, ι′′2)

2) m′1L = m′2L, hist
′
1L = hist′2L

3) ι′1 and ι′2 are consistent

Proof: By induction on the structure of ca using Lemma 1.

Lemma 4. Given ι1 and ι2 that are
1) two consistent termination-insensitive monitor configurations such that
2) both ι1 and ι2 are faithful with respect to the same source program configuration and two final configurations
〈ca; cb,m1, L̂1, Ĥ1, E, hist1〉 and 〈ca; cb,m2, L̂2, Ĥ2, E, hist2〉 respectively, where

3) m1L = m2L, hist1L = hist2L
4) and we know of two transition sequences

(〈ca; cb,m1, L̂, Ĥ1, E, hist1〉, ι1)−→∗(〈c′a; cb,m′1, L̂, Ĥ
′
1, E, hist

′
1〉, ι′1)−→∗`1(〈c′′,m′′1 , L̂′′1 , Ĥ ′′1 , E′′1 , hist′′1〉, ι′′1)

and
(〈ca; cb,m2, L̂, Ĥ2, E, hist2〉, ι2)−→∗`2(〈d′′,m′′2 , L̂′′2 , Ĥ ′′2 , E′′2 , hist′′2〉, ι′′2)

then
1) for the second trace we have that

(〈ca; cb,m2, L̂, Ĥ2, E, hist2〉, ι2)−→∗(〈c′a; cb,m′2, L̂, Ĥ
′
2, E, hist

′
2〉, ι′2)−→∗`2(〈d′′,m′′2 , L̂′′2 , Ĥ ′′2 , E′′2 , hist′′2〉, ι′′2)

2) m′1L = m′2L, hist
′
1L = hist′2L

3) ι′1 and ι′2 are consistent
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4) c′′ = d′′, L̂′′1 = L̂′′2 , E′′1 = E′′2 , hist
′′
1L = hist′′2L

5) ι′′1 and ι′′2 are consistent
6) if `1 is not a declassification event then

• m′′1L = m′′2L and `1 = `2

7) if `1 is a declassification event then
• `2 is a declassification event as well.

Proof: By induction on the structure of ca using Lemma 1.

F.3. Advancement Lemma

Lemma 5. Given ι1 and ι2 that are
1) two consistent termination-insensitive monitor configurations such that
2) both ι1 and ι2 are faithful with respect to the same source program configuration and two final configurations
〈c,m1, L̂1, Ĥ1, E, hist1〉 and 〈c,m2, L̂2, Ĥ2, E, hist2〉 respectively, where

3) m1L = m2L, hist1L = hist2L
4) and we know of two transition sequences

(〈c,m1, L̂, Ĥ1, E, hist1〉, ι1)−→∗(〈c′,m′1, L̂, Ĥ ′1, E, hist′1〉, ι′1)−→∗`1(〈c′′,m′′1 , L̂′′1 , Ĥ ′′1 , E′′1 , hist′′1〉, ι′′1)

and
(〈c,m2, L̂, Ĥ2, E, hist2〉, ι2)−→∗`2(〈d′′,m′′2 , L̂′′2 , Ĥ ′′2 , E′′2 , hist′′2〉, ι′′2)

then
1) for the second trace we have that

(〈c,m2, L̂, Ĥ2, E, hist2〉, ι2)−→∗(〈c′,m′2, L̂, Ĥ ′2, E, hist′2〉, ι′2)−→∗`2(〈d′′,m′′2 , L̂′′2 , Ĥ ′′2 , E′′2 , hist′′2〉, ι′′2)

2) m′1L = m′2L, hist
′
1L = hist′2L

3) ι′1 and ι′2 are consistent
4) c′′ = d′′, L̂′′1 = L̂′′2 , E′′1 = E′′2 , hist

′′
1L = hist′′2L

5) ι′′1 and ι′′2 are consistent
6) if `1 is not a declassification event then

• m′′1L = m′′2L and `1 = `2

7) if `1 is a declassification event then
• `2 is a declassification event as well.

Proof: By induction on c using sequential composition Lemmas 3 and 4.

F.4. Backbone Lemma

Lemma 6 (Backbone Lemma). Given a program c and an enforced trace started from configuration
(〈c, i, L̂, Ĥ, ∅, ε〉, 〈i, ε, L〉) which produces a sequence of low events ~̀n:

(〈c, i, L̂, Ĥ, ∅, ε〉, 〈i, ε, L〉)−→∗(〈c1, i1, L̂, Ĥ1, ∅, hist1〉, ι1)−→`1(〈c′1, i′1, L̂1, Ĥ1, E1, hist
′
1〉, ι′1)−→∗`2...`j−1

(〈cj , ij , L̂j−1, Ĥj , Ej−1, histj〉, ιj)−→`j (〈c′j , i′j , L̂j , Ĥ ′j , Ej , hist′j〉, ι′j)−→∗`j+1...`n−1

(〈cn, in, L̂n−1, Ĥn, En−1, histn〉, ιn)−→`n(〈c′n, i′n, L̂n, Ĥ ′n, En, hist′n〉, ι′n)

and an initial high environment (m, Ŝ) ∈ kι(c, iL, L̂, ~̀n), there exist
m1,m

′
1, Ŝ1, Ŝ

′
1, s1, s

′
1, κ1, κ

′
1, . . .mn,m

′
n, Ŝn, Ŝ

′
n, sn, s

′
n, κ
′
n, κ
′
n such that ∀ j . 1 ≤ j ≤ n we have

1) mjL = ijL,m
′
jL

= i′jL, and
2) histj , sj and hist′j , s

′
j are pairwise consistent input histories,

3) ιj , κj and ι′j , κ
′
j are pairwise consistent monitor configurations,
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4) for the trace starting with m and Ŝ we have

(〈c,m, L̂, Ŝ, ∅, ε〉, 〈m, ε, L〉)−→∗(〈c1,m1, L̂, Ŝ1, ∅, s1〉, κ1)−→`1(〈c′1,m′1, L̂1, Ŝ
′
1, E1, s

′
1〉, κ1)−→∗`2...`j−1

(〈cj ,mj , L̂j−1, Ŝj , Ej−1, sj〉, κj)−→`j (〈c′j ,m′j , L̂j , Ŝ′j , Ej , s′j〉, κ′j)−→∗`j+1...`n−1

(〈cn,mn, L̂n−1, Ŝn, En−1, sn〉, κn)−→`n(〈c′n,m′n, L̂n, Ŝ′n, En, s′n〉, κ′n)

Proof: By induction on n using Advancement Lemma 5.

F.5. Termination-insensitive security

Restatement of Proposition 3. Given a program c, initial memory i, communication environments L̂, Ĥ and a
sequence ~̀ of low events produced by 〈c, i, ∅, L̂, Ĥ, ε〉 while monitored by monitor 〈i, ε, L〉, we have that c satisfies
termination-insensitive security with respect to ~̀, iL, and L̂, that is, T̂ISec(c, iL, L̂, ~̀).

Proof: By induction on the length of the sequence of low events ~̀.
• Base case. ~̀= ε. In this case we have n = 0, and, therefore, the main expression of the security definition trivially

holds.
• Induction step. We assume the proposition holds for events of length up to n− 1 and need to prove that if

〈c, i, L̂, Ĥ, ∅, hist〉−→∗~̀
n
〈c′n, i′n, L̂n, Ĥn, En, histn〉

is a trace enforced by ι then ∀m ∈ kι(c, iL, L̂, ~̀n) .

p(m, L̂, Ĥ, En, histn) ∩
⋃
`′

kι(c,mL, L̂, ~̀n−1`
′) ⊆ kι(c,mL, L̂, ~̀n).

We consider two cases for the low event `n
1) `n is not a declassification event.

In this case we apply Backbone Lemma 6 followed by Advancement Lemma 5 which gives us that all
possible `′ in the term corresponding to progress knowledge must be equal to `n. This allows us to state that⋃

`′

kι(c,mL, L̂, ~̀n−1`
′) ⊆ kι(c,mL, ~̀n)

We can intersect the left hand side of this expression with p(m, L̂, Ĥ, En, histn) obtaining the desired
inequality.

2) `n is a declassification event.
We assume contrary, that is, there exists an initial high environment (m, Ŝ) ∈ kι(c,mL, L̂, ~̀n) such that

p(m, L̂, Ĥ, En, histn) ∩
⋃
`′

kι(c,mL, L̂, ~̀n−1`
′) ⊃ kι(c,mL, L̂, ~̀n).

In other words there are (m?, Ŝ?) such that (m?, Ŝ?) ∈ p(m, L̂, Ĥ, En, histn) and (m?, Ŝ?) ∈
kι(c,mL, L̂, ~̀n−1`

′) for `′ 6= `n, but (m?, Ŝ?) 6∈ kι(c,mL, L̂, ~̀n).
Next, (m?, Ŝ?) ∈ p(m, L̂, Ĥ, En, histn) =⇒ m? =L m ∧ (m?, Ŝ?)I(En, L̂, histn)(m, Ĥ). That is,
memupd(m?, L̂, Ŝ?, histn) = memupd(m?, L̂, Ĥ?, histn). Since (m, Ĥ) ∈ kι(c,mL, L̂, ~̀n) then, using
Lemma 2, mn(e) = memupd(m, L̂, Ĥ, histn)(e). Similarly, since (m?, Ŝ?) ∈ kι(c,mL, L̂, ~̀n−1`

′) then
we have that m?

n(e) = memupd(m?, L̂, Ŝ?, hist?n)(e). Due to our assumption that `′ 6= `n, we also have
that m?

n(e) 6= mn(e). Also since both declassifications are enforced it should be that the input context level
ct and ct? must be equal to L and as the result of that no inputs have taken place in high context, that is
hist? = hist. Taking all of the above facts into account we can derive that

mn(e) = memupd(m, L̂, Ĥ, histn)(e) = memupd(m, L̂, Ŝ, histn)(e)

= memupd(m, L̂, Ŝ, hist?n)(e) = m?
n(e) 6= mn(e)

which brings us to contradiction.
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Appendix G.
Proofs for Extended Language: Termination-Sensitive Enforcement

For termination-sensitive enforcement we show a set of lemmas similar to the one shown in the previous section.

G.1. Monitor consistency

Lemma 7 (Monitor configuration through high context). Given a trace

(〈c,m, L̂, Ĥ, E, hist〉, 〈st, U, ct〉)−→∗(〈c′,m′, L̂, Ĥ ′, E, hist′〉, 〈st′, U ′, ct〉)

where
1) the context stack of the first configuration has a form st = levn . . . levk+1 : H : levk−1 . . . lev1 with levn on

the top of the stack and lev1 on the bottom of it.
2) the execution of this trace does not consume stack entries below and including levk = H

then the starting and ending sets of updated memories are equal: U = U ′.

Proof: By induction on c.

G.2. Sequential composition

Lemma 8. Given σ1 and σ2 that are
1) two consistent termination-sensitive monitor configurations such that
2) both σ1 and σ2 are faithful with respect to the same source program configuration and two final configurations
〈ca; cb,m1, L̂1, Ĥ1, E, hist1〉 and 〈ca; cb,m2, L̂2, Ĥ2, E, hist2〉 respectively, where

3) m1L = m2L, hist1L = hist2L
4) and

(〈ca; cb,m1, L̂, Ĥ1, E, hist1〉, σ1)−→∗(〈cb,m′1, L̂, Ĥ ′1, E, hist′1〉, σ′1)−→∗`1(〈c′′,m′′1 , L̂′′1 , Ĥ ′′1 , E′′1 , hist′′1〉, σ′′1 )

then
1) (〈ca; cb,m2, L̂, Ĥ2, E, hist2〉, σ2)−→∗(〈cb,m′2, L̂, Ĥ ′2, E, hist′2〉, σ′2)−→∗`2(〈d′′,m′′2 , L̂′′2 , Ĥ ′′2 , E′′2 , hist′′2〉, σ′′2 )
2) m′1L = m′2L, hist

′
1L = hist′2L

3) σ′1 and σ′2 are consistent

Proof: By induction on the structure of ca using Lemma 7.

Lemma 9. Given σ1 and σ2 that are
1) two consistent termination-sensitive monitor configurations such that
2) both σ1 and σ2 are faithful with respect to the same source program configuration and two final configurations
〈ca; cb,m1, L̂1, Ĥ1, E, hist1〉 and 〈ca; cb,m2, L̂2, Ĥ2, E, hist2〉 respectively, where

3) m1L = m2L, hist1L = hist2L
4) and

(〈ca; cb,m1, L̂, Ĥ1, E, hist1〉, σ1)−→∗(〈c′a; cb,m′1, L̂, Ĥ
′
1, E, hist

′
1〉, σ′1)−→∗`1(〈c′′,m′′1 , L̂′′1 , Ĥ ′′1 , E′′1 , hist′′1〉, σ′′1 )

then
1) (〈ca; cb,m2, L̂, Ĥ2, E, hist2〉, σ2)−→∗(〈c′a; cb,m′2, L̂, Ĥ

′
2, E, hist

′
2〉, σ′2)−→∗`2(〈d′′,m′′2 , L̂′′2 , Ĥ ′′2 , E′′2 , hist′′2〉, σ′′2 )

2) m′1L = m′2L, hist
′
1L = hist′2L

3) σ′1 and σ′2 are consistent
4) c′′ = d′′, L̂′′1 = L̂′′2 , E′′1 = E′′2 , hist

′′
1L = hist′′2L

5) σ′′1 and σ′′2 are consistent
6) if `1 is not a declassification event then

• m′′1L = m′′2L and `1 = `2
7) if `1 is a declassification event then

• `2 is a declassification event as well.

Proof: By induction on the structure of ca using Lemma 7.
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G.3. Advancement Lemma

Lemma 10. Given σ1 and σ2 that are
1) two consistent termination-sensitive monitor configurations such that
2) both σ1 and σ2 are faithful with respect to the same source program configuration and two final configurations
〈c,m1, L̂1, Ĥ1, E, hist1〉 and 〈c,m2, L̂2, Ĥ2, E, hist2〉 respectively, where

3) m1L = m2L, hist1L = hist2L
4) and

(〈c,m1, L̂, Ĥ1, E, hist1〉, σ1)−→∗(〈c′,m′1, L̂, Ĥ ′1, E, hist′1〉, σ′1)−→∗`1(〈c′′,m′′1 , L̂′′1 , Ĥ ′′1 , E′′1 , hist′′1〉, σ′′1 )

then
1) (〈c,m2, L̂, Ĥ2, E, hist2〉, σ2)−→∗(〈c′,m′2, L̂, Ĥ ′2, E, hist′2〉, σ′2)−→∗`2(〈d′′,m′′2 , L̂′′2 , Ĥ ′′2 , E′′2 , hist′′2〉, σ′′2 )
2) m′1L = m′2L, hist

′
1L = hist′2L

3) σ′1 and σ′2 are consistent
4) c′′ = d′′, L̂′′1 = L̂′′2 , E′′1 = E′′2 , hist

′′
1L = hist′′2L

5) σ′′1 and σ′′2 are consistent
6) if `1 is not a declassification event then

• m′′1L = m′′2L and `1 = `2

7) if `1 is a declassification event then
• `2 is a declassification event as well.

Proof: By induction on c using sequential composition Lemmas 8 and 9.

G.4. Backbone Lemma

Lemma 11 (Backbone Lemma). Given a program c and an enforced trace started from configuration
(〈c, i, L̂, Ĥ, ∅, ε〉, 〈ε, ∅, L〉) which produces a sequence of low events ~̀n:

(〈c, i, L̂, Ĥ, ∅, ε〉, 〈ε, ∅, L〉)−→∗(〈c1, i1, L̂, Ĥ1, ∅, hist1〉, σ1)−→`1(〈c′1, i′1, L̂1, Ĥ1, E1, hist
′
1〉, σ′1)−→∗`2...`j−1

(〈cj , ij , L̂j−1, Ĥj , Ej−1, histj〉, σj)−→`j (〈c′j , i′j , L̂j , Ĥ ′j , Ej , hist′j〉, σ′j)−→∗`j+1...`n−1

(〈cn, in, L̂n−1, Ĥn, En−1, histn〉, σn)−→`n(〈c′n, i′n, L̂n, Ĥ ′n, En, hist′n〉, σ′n)

and an initial high environment (m, Ŝ) ∈ kσ(c, iL, L̂, ~̀n), there exist
m1,m

′
1, Ŝ1, Ŝ

′
1, s1, s

′
1, κ1, κ

′
1, . . .mn,m

′
n, Ŝn, Ŝ

′
n, sn, s

′
n, κ
′
n, κ
′
n such that ∀ j . 1 ≤ j ≤ n we have

1) mjL = ijL,m
′
jL

= i′jL, and
2) histj , sj and hist′j , s

′
j are pairwise consistent input histories,

3) σj , κj and σ′j , κ
′
j are pairwise consistent monitor configurations,

4) for the trace starting with m and Ŝ we have

(〈c,m, L̂, Ŝ, ∅, ε〉, 〈m, ε, L〉)−→∗(〈c1,m1, L̂, Ŝ1, ∅, s1〉, κ1)−→`1(〈c′1,m′1, L̂1, Ŝ
′
1, E1, s

′
1〉, κ1)−→∗`2...`j−1

(〈cj ,mj , L̂j−1, Ŝj , Ej−1, sj〉, κj)−→`j (〈c′j ,m′j , L̂j , Ŝ′j , Ej , s′j〉, κ′j)−→∗`j+1...`n−1

(〈cn,mn, L̂n−1, Ŝn, En−1, sn〉, κn)−→`n(〈c′n,m′n, L̂n, Ŝ′n, En, s′n〉, κ′n)

Proof: By induction on n using Advancement Lemma 10.

G.5. Termination-sensitive security

Restatement of Proposition 4. Given a program c, initial memory i, communication environments L̂, Ĥ , and a
sequence ~̀ of low events produced by 〈c, i, ∅, L̂, Ĥ, ε〉 while monitored by monitor 〈ε, ∅, L〉, we have that c satisfies
termination-sensitive security with respect to ~̀, iL, and L̂, that is, T̂Sec(c, iL, L̂, ~̀).

Proof: By induction on the length of the sequence of low events ~̀.
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• Base case. ~̀= ε. In this case we have n = 0, and, therefore, the main expression of the security definition trivially
holds.

• Induction step. We assume the proposition holds for events of length up to n− 1 and need to prove that if

〈c, i, L̂, Ĥ, ∅, hist〉−→∗~̀
n
〈c′n, i′n, L̂n, Ĥn, En, histn〉

is a trace enforced by σ then ∀m ∈ kσ(c, iL, L̂, ~̀n) .

p(m, L̂, Ĥ, En, histn) ⊆ kσ(c,mL, L̂, ~̀n).

We consider two cases for the low event `n
1) `n is not a declassification event.

In this case we apply Backbone Lemma 11 followed by Advancement Lemma 10 which gives us

kσ(c,mL, L̂, ~̀n−1) ⊆ kσ(c,mL, ~̀n)

We can intersect the left hand side of this expression with p(m, L̂, Ĥ, En, histn) obtaining the desired
inequality. Since no declassifications take place between `n−1 and `n we have that En−1 = En.
Consequently, no escape hatches in En refer to the events in input history after those in histn−1 Together
with the induction hypothesis this gives us

p(m, L̂, Ĥ, En, histn) = p(m, L̂, Ĥ, En−1, histn−1) ⊆ kσ(c,mL, L̂, ~̀n−1) ⊆ kσ(c,mL, ~̀n)

2) `n is a declassification event.
We assume contrary, that is, there exists an initial high environment (m, Ŝ) ∈ kσ(c,mL, L̂, ~̀n) such that

p(m, L̂, Ĥ, En, histn) ⊃ kσ(c,mL, L̂, ~̀n).

In other words there are (m?, Ŝ?) such that (m?, Ŝ?) ∈ p(m, L̂, Ĥ, En, histn) but (m?, Ŝ?) 6∈
kσ(c,mL, L̂, ~̀n).

Next, (m?, Ŝ?) ∈ p(m, L̂, Ĥ, En, histn) =⇒ m? =L m ∧ (m?, Ŝ?)I(En, L̂, histn)(m, Ĥ). That is,
memupd(m?, L̂, Ŝ?, histn) = memupd(m?, L̂, Ĥ?, histn). Since (m, Ĥ) ∈ kσ(c,mL, L̂, ~̀n) then, using
Lemma 2, mn(e) = memupd(m, L̂, Ĥ, histn).

We also have that m? ∈ p(m, L̂, Ĥ, En, histn) =⇒ m? ∈ p(m, L̂, Ĥ, En−1, histn−1) and by induction
hypothesis this gives us that m? ∈ kσ(c,mL, L̂, ~̀n−1). This allows us to apply Backbone Lemma 11
followed by Advancement Lemma 10 that gives us that the trace starting with (m?, Ŝ?) should also produce
a declassification event `?n. But since (m?, Ŝ?) is not part of the knowledge set for (m, Ĥ) after `n, we have
also that

m? 6∈ kσ(c,mL, L̂, ~̀n) =⇒ m?
n(e) 6= mn(e)

On the other hand, because both `n and `?n are produced while being enforced by the termination-
sensitive monitor, it should be that vars(e) ∩ Un = ∅, vars(e) ∩ U?n = ∅, and ctn = ct?n = L.
Together these facts give us that the current value of variables appearing in expression e is the same as
it was at their last input. Moreover, all inputs so far have happened in low context. That is, we can say
that mn = memupd(m, L̂, Ĥ, histn)(e) and m?

n(e) = memupd(m?, L̂, Ŝ?, hist?n)(e), and moreover
hist = hist?. Putting all these facts together we have that

mn(e) = memupd(m, L̂, Ĥ, histn)(e) = memupd(m, L̂, Ŝ, histn)(e)

= memupd(m, L̂, Ŝ, hist?n)(e) = m?
n(e) 6= mn(e)

which brings us to contradiction.
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