
Metadata Privacy Beyond Tunneling for Instant Messaging

Boel Nelson
Aarhus University

boel@cs.au.dk

Elena Pagnin
Chalmers University of Technology

elenap@chalmers.se

Aslan Askarov
Aarhus University
aslan@cs.au.dk

Abstract—Transport layer data leaks metadata unintentionally
– such as who communicates with whom. While tools for
strong transport layer privacy exist, they have adoption
obstacles, including performance overheads incompatible
with mobile devices. We posit that by changing the objective
of metadata privacy for all traffic, we can open up a new
design space for pragmatic approaches to transport layer
privacy. As a first step in this direction, we propose using
techniques from information flow control and present a
principled approach to constructing formal models of systems
with metadata privacy for some, deniable, traffic. We prove
that deniable traffic achieves metadata privacy against strong
adversaries– this constitutes the first bridging of information
flow control and anonymous communication to our knowledge.
Additionally, we show that existing state-of-the-art protocols
can be extended to support metadata privacy, by designing a
novel protocol for deniable instant messaging (DenIM), which
is a variant of the Signal protocol. To show the efficacy
of our approach, we implement and evaluate a proof-of-
concept instant messaging system running DenIM on top of
unmodified Signal. We empirically show that the DenIM on
Signal can maintain low-latency for unmodified Signal traffic
without breaking existing features, while at the same time
supporting deniable Signal traffic.

1. Introduction

Modern instant messaging (IM) services strive for strong
end-to-end security. Services such as Signal, WhatsApp [1],
Wire [2], and Facebook Messenger [3], all use the Signal
protocol that is formally secure [4] and achieves ambi-
tious security goals, such as post-compromise security,
backward secrecy, confidentiality, and integrity. Still, these
IM services lack strong metadata privacy, making them
vulnerable to traffic analysis attacks. This is a serious
deficiency, because traffic analysis remains an effective
mechanism [5], [6] for surveillance and censorship used by
governments, organizations, and internet service providers
in over 100 countries [7]. For example, China’s “great
firewall” actively probes and censors privacy tools [8].
Although collecting metadata may seem non-intrusive,
metadata is used to make critical decisions – “we kill
people based on metadata”, as former US government
official general Hayden [9] put it. “Harvest today, analyze
tomorrow” is a viable adversarial strategy for many such
actors.

While the general problem of metadata privacy has been
extensively studied, there are both social and technical
barriers that prevent adoption of existing privacy tools to
IM services. On a social level, people are either unaware

of privacy tools [10] or have diverse misconceptions
about them [11]. Adding to the existing problem, people
also find these tools too complicated to use, or lack the
knowledge of how to use them [12]. For example, Norcie
et al. [13] investigated the Tor Browser Bundle and found
that users experienced usability issues such as the browser’s
launch time and difficulties downloading and installing
it. Beyond the challenges of usability, there are risks of
being scrutinized for having a particular app installed [14],
[15].

On a technical level, available tools are far from perfect.
The Tor project [16] although relatively popular with 2M
active users [17], is vulnerable to de-anonymization [18],
denial of service (DoS) [19], and traffic analysis [20].
Because Tor can be automatically fingerprinted [5], [6], it
is also easy to block (ironically, the authors of this paper
themselves were blocked from accessing the Tor project’s
website on their university network). Metadata private
focused IM tools that run on Tor [21], [22], [23], [24]
suffer from the same issues. Other tools that hide traffic
by imitating well-known apps do not produce credible
traffic [25].

The strongest guarantees for metadata privacy are provided
by dedicated protocols. In particular, round-based, DC-nets
like, protocols [26], [27], [28], [29], where predetermined
rounds make traffic patterns indistinguishable, are able
to resist traffic analysis. However, round-based protocols
are both resource exhaustive and inflexible. The rounds
themselves require constant overhead, which results in poor
performance [30], making them especially infeasible for
resource constrained devices such as phones or wearables.
Moreover, a major obstacle with round-based protocols is
that they depend on fixed sets of individuals participating.
That is, participants cannot join or leave without changing
the privacy guarantees. Finally, round-based protocols are
also easy to fingerprint and block.

Existing approaches to metadata privacy all have in com-
mon that they focus on the strong objective of metadata
privacy for all users all the time. However, such a strong
objective significantly delimits the design space of possible
solutions. We propose a different, pragmatic objective:
rather than offering privacy to all users all the time,
let us offer privacy to all users some of the time. This
shift in objective expands the design space for metadata
privacy to new solutions.

Our new approach is to incorporate metadata privacy
into an existing store-and-forward IM protocol. To that
extent, we present Deniable Instant Messaging (DenIM)–
an IM protocol that provides both message confidentiality

and metadata privacy. DenIM distinguishes two kinds of
messages: (i) regular messages that do not require metadata
privacy, and (ii) deniable messages that do require it.
Regular and deniable communication is combined in one
system, and users decide which messages to send privately.
To withstand traffic analysis, deniable messages are not
communicated immediately, instead they are piggybacked
on top of the regular messages, which in turn requires
that all messages are extended by a small known amount
of bytes. The store-and-forward server breaks the link
between the sender and receiver of a private message
by buffering the message until there is an opportunity to
piggyback it on some other regular message to the receiver.
It is vital that the messages are extended even if the
communicating parties have nothing to say, in which case
a dummy payload is sent instead. To minimize overhead,
the size of the payload must be small in proportion to the
overall communication.

The importance of incorporating metadata privacy into an
existing IM protocol aligns with earlier observations in
the literature. As EFF put it, “An app with great security
features is worthless if none of your friends and contacts
use it” [31]. In their paper “Practical Traffic Analysis
Attacks on Secure Messaging Applications’’, Bahramali et
al. [32] recommend that metadata privacy for IM should
be adopted by IM services to be effective. An encouraging
development in this direction already is WhatsApp’s use
of the Noise Protocol Framework (NPF) [33] to protect
certain metadata [1]. Finally, Zuckerman’s [34] Cute Cat
Theory of Censorship posits that platforms that combine
entertainment with political activism are more resilient to
censorship than dedicated political platforms.

In our case, we pair DenIM with the (unmodified) Signal
protocol. We call the resulting system DenIM on Signal.
We chose Signal because it provides the state-of-the art se-
curity guarantees in instant messaging, including: forward
secrecy, backward secrecy (post-compromise security), data
confidentiality, and integrity (see [4] for detail).

DenIM’s piggybacking of deniable messages is a form of
tunneling (e.g., [35], [36], [37]). Yet tunneling alone is
insufficient. The reason is that in settings where adversaries
are legitimate users in the system, information may be
leaked inadvertently through parts of the protocol state
that are shared between all users. For example, in Signal,
adversaries can gain information about other users through
the state of the key distribution center because the protocol
allow users to run out of keys – this allows adversaries
to count the number of keys a user has and in extension
allows the adversary to deduce how many conversations a
user is part of.

To ensure that DenIM guarantees metadata privacy for
deniable messages, including unknown attacks, we use
techniques from secure information flow. Our insight is to
model user deniable behavior as user strategies [38] – a
technical device that is traditionally used for specifying
semantic security of interactive and nondeterministic pro-
grams. In DenIM, a user strategy is a function that given a
history of the user’s communication determines their next
deniable action, e.g., send a deniable message, request key
material from the server to initiate new deniable communi-
cation, or block a user from receiving deniable messages.

We recast the notion of metadata privacy as strategy-based
noninterference: user strategies must not leak through the
protocol. The significance of this insight is that because
noninterference is an end-to-end characterization, proving
noninterference requires that there is no way in which the
sensitive information may leak anywhere in the protocol,
not just on the transport layer. In essence, this guides the
features and non-features of DenIM. For example, DenIM
restricts the notification of user blocking, because notifying
a user that they have been blocked leaks information about
the blocking user’s deniable behavior.

The contributions of this paper are as follows:

• It presents a deniable variant of the Signal protocol
(Section 2.2) called DenIM (Section 4.1), that supports
both the original strong cryptographic guarantees of
Signal, and metadata privacy.

• It presents a system design that layers deniable Signal
messages on top of the unmodified Signal protocol,
which we call DenIM on Signal (Section 4).

• It presents a formal privacy analysis (Section 5) that
constitutes a principled approach of using information
flow techniques to guarantee privacy by proving
noninterference.

• It presents a proof-of-concept implementation (Sec-
tion 6.1) of an instant messaging system with DenIM.

• It presents an empirical evaluation (Sections 6.2
and 6.3) of the performance of DenIM.

2. Background

This section provides an overview of instant messaging
(IM), and the main machinery in the Signal protocol which
we design a deniable version of in Section 4.1.

2.1. Instant messaging

In 2019, instant messaging (IM) services had seven billion
registered accounts worldwide [39]. The most popular IM
services include WhatsApp (2B users), Facebook messen-
ger (1.3B users), iMessage (estimated to 1B users), Tele-
gram (550M users), and Snapchat (538M users) [40], [41].
While IM appears deceptively simple, the sheer amount
of users and traffic (69M messages/min in 2021 [42])
present several engineering challenges. Keeping up with
the demands requires deploying and maintaining robust
systems. As an example, WhatsApp’s architecture handles
over one million connections per server [43].

All major IM services, including WhatsApp, Facebook
messenger, Telegram and Snapchat, use centralized servers
to forward messages [32]. Many IM apps also come
with end-to-end encryption, in addition to server-client
encryption (through TLS). Telegram uses their own pro-
tocol, MTProto [44], iMessage uses RSAES-OAEP [45],
and Snapchat uses an unnamed encryption scheme for
some of its content [46]. The most popular protocol is
Signal [47], [48], which also has the strongest security
guarantees of the mentioned protocols, and is used by
WhatsApp [1], Facebook Messenger [3], Wire [2], Chat-
Secure, Conversations, Pond, the Signal app, and Silent
Circle [4]. The Signal protocol is formally secure [4], and is
based on Off-the-Record Messaging (OTR) [49] and Silent

2

Circle Instant Messaging Protocol (SCIMP) [50]. Despite
strong cryptographic guarantees, none of the centralized
IM services support transport layer privacy for IM.

2.2. The Signal protocol

At a high level the Signal protocol [51] realizes an end-to-
end secure communication channel between two parties
that exchange instant messages in a possibly asynchronous
way, i.e., users may not be online at the same time.
Signal distinguished itself among the landscape of mes-
saging protocols in that it achieves ambitious security
goals including: forward secrecy, backward secrecy (post-
compromise security), data confidentiality, and integrity
(see [4] for detail). This is obtained by managing several
different cryptographic keys (Table 1), relying on semi-
trusted centralized servers (to store and forward messages,
and implement a key distribution center), and combining
three cryptographic primitives: a key derivation function
(KDF), a non-interactive key-exchange protocol (namely
DH for Diffie-Hellman) for initiating new sessions, and
an authenticated encryption scheme with associated data
(AEAD).

2.2.1. Keys used in Signal. In Signal, each user U holds a
set of keys that identify the user, and are used to initiate new
sessions (chats) and to AEAD-encrypt messages. Table 1
provides a categorization of the cryptographic key material
of Signal that is relevant to this work. Keys employed only
to set up new sessions are highlighted with the symbol
⋆.

Name Key(s) Usage

Identity key-pair⋆ {idpkU , idskU} Long-term
Mid-term key-pair⋆ {prepkU , preskU} Mid-term
Ephemeral key-pair(⋆) {epkU , eskU} One-time
Master secret ms One-time
Message key mkx ,y One-time

TABLE 1: List of Signal’s keys that are relevant to this
work. Ephemeral keys are used in various parts of the
Signal protocol, when employed in session initialization
they are commonly called one-time keys.

2.2.2. Overview of the Signal Protocol. The Signal
protocol is made of three main steps:

User registration. Run once in the lifetime of a
user in the system. This step entails storing a user’s
public key material in the Signal server, namely
idpkU , prepkU , and a set of (one-time) ephemeral public
keys {epk(1)U , . . . , epk

(n)
U }.

New-session initialization. Run once per new session
initiated by a user. This step is used to start a new chat.
The requesting user A interacts with the server to obtain
the handle of B, another user, consisting of idpkB , prepkB
and a single one-time public key epk

(i)
B . A uses B’s keys

together with their identity secret key, long term secret
key and an ephemeral secret key to run a non-interactive
key-exchange and generate a master secret key msAB , that
is computable only by A and B.

The double ratchet mechanism for messaging. Run
every time the user receives or sends a new message. In

Signal every message is AEAD-encrypted under a different
message key mkx,y. We index the message keys by two
non-negative integers x, y that operate as coordinates. The
value x identifies the current sender, y the number of
messages sent by the current sender since the last change
of speaker. Thus even values of x correspond to events
where the current speaker is the initiator of the chat, while
y denotes how many messages the sender of level x has
sent so far. In order to securely derive new keys from
previous ones, the double ratchet mechanism ingeniously
combines two KDFs.

3. System design

This section presents the scope and goals of our deniable
messaging system, DenIM on Signal. We start by defining
the threat model, which will dictate the necessary design
goals and trust assumptions.

3.1. Threat model

We consider a global active adversary who participates in
the deniable protocol. The adversary can:

• Observe the entire network, including messages to
and from the server, and to and from the users.

• Insert or modify traffic.
• Participate in the protocol. This gives to the adversary

access to the parts of the protocol state that are acces-
sible to all protocol participants, including requesting
other users’ keys from the key distribution center
(KDC), and sending messages.

We assume that the adversary cannot compromise the
internal state of honest parties, including servers. The
adversary may control multiple nodes in the network, and
can collude with other adversaries.

Under this threat model, the adversary could for example
be an internet service provider, or a nation-state. Given
these capabilities, the goal of the adversary is:

• To learn or to alter the payload of deniable traffic
between honest parties.

• To learn whether a given network message contains
deniable payload or not.

• To learn whether two parties have an ongoing ex-
change of deniable traffic or not.

Note that our system makes traffic ’deniable’ on the
transport layer, which is different from e.g., deniable
encryption [52] where the goal is to give deniability for
the message content (plaintext) rather than hiding fact of
communication. Our goal is that deniable communication
should be unobservable to an adversary – we prove
(Theorem 1) that this is the case by guaranteeing that
network traces with and without deniable communication
appear indistinguishable to the adversary.

3.2. Design goals

The high-level goal of our system is to be resilient against
adversaries with the goals in Section 3.1. Additionally,
tunneling deniable traffic inside instant messaging systems

3

requires making decisions regarding performance trade-
offs between the deniable traffic and the regular traffic.
We derive the design goals for security and privacy
(Section 3.2.1) based on the threat model and instant
messaging use case, and design goals for performance
(Section 3.2.2) from the use case.

3.2.1. Security and privacy goals.
Confidentiality of users’ deniable behavior. A conse-
quence of our threat model is that an adversary could try
to infer users’ deniable behavior both by observing the
network, or by observing shared protocol states. Adequate
protection measures therefore depend on data the users
generate by interacting with the deniable protocol not
leaking into channels the adversary can observe (the
network and the shared state). That is, a successful im-
plementation depends on proving noninterference between
the deniable protocol and the protocol it piggybacks on
– noninterference ensures all of the users’ input to the
deniable protocol is kept confidential, not just that the
network traffic is protected.

Privacy guarantees independent of the number of online
users. To achieve strength-in-numbers, we aim for the
design where the privacy guarantees do not depend on the
dynamic behavior of the system, i.e., users may join or
leave the system without significantly affecting the privacy
of others. This means that the system should tunnel the
deniable traffic using an observable protocol that does not
achieve transport layer privacy on its own.

Strong security guarantees for deniable messages.
Message content should be protected using state-of-the-
art techniques, which for IM can be achieved via the
Signal protocol. Signal is more than just a mere key
exchange protocol; it is designed to deliver not only confi-
dentiality and integrity, but also more advanced security
features such as key healing. We aim to maintain the
same security benefits provided by Signal by carefully
building our deniable messaging machinery around the
Signal protocol in a way that does not impact Signal’s
security functionalities.

3.2.2. Performance goals.
Parameterizable bandwidth overhead for deniable
traffic. To control the privacy-performance trade-offs in
the system, the deniable payload overhead should be a
global tuneable parameter that is set on a case-by-case
basis to match a user population’s demand for deniable
traffic. There should be no limitation on the length of the
regular traffic.

Prioritize low latency for regular traffic. We prioritize
the performance of regular traffic – it is important that
users continue to use the regular IM system – above
the performance of the deniable traffic. This creates an
asymmetry in the latency of regular and deniable com-
munication. When using the protocol for regular Signal,
traffic is forwarded immediately resulting in low latency
overhead. For DenIM, the latency depends on when traffic
can be safely piggybacked. While a system with different
privacy guarantees for different messages like this has not
yet been studied from the usability perspective, we assume
that a higher latency overhead for deniable communication
is tolerable as the privacy guarantees are stronger.

3.3. Trust assumptions

The previously stated design goals, combined with
the threat model, leads to the following trust assump-
tions:

• The adversary cannot access the internal state of
honest parties.

• Users trust receivers of their deniable traffic, i.e. users
are by design not able to deny having sent traffic to
their intended receiver.

• Users’ deniable behavior does not influence their
regular behavior, e.g., a user does not send more
regular traffic than they normally would to piggyback
their deniable traffic.

• The forwarding servers are trusted.
• The KDC is trusted, and can generate ephemeral

keys on behalf of a user in case the user’s deni-
able ephemeral keys have been depleted. All user-
generated keys are signed by the issuing user, just
like in Signal. This means that the KDC cannot
impersonate users, but may have access to one third
of the key material to initialize the master secret in
certain cases.

• Users do not issue deniable key requests for adver-
saries’ keys, and do not respond to deniable Signal
sessions initiated by adversaries.

Note that our trust assumptions to a large extent are
inherited from the use case, IM, and from the Signal
protocol. For example, centralized, trusted servers is the
natural setting for IM. Moreover, Signal assumes that a
user is able to verify that the receiver of messages is a
trusted party using an out of bounds channel – in their
deployment they support this by providing a QR code that
both parties are supposed to verify in person.

Our formal model (Section 5) incorporates the trust as-
sumptions at a technical level.

4. DenIM on Signal

This section presents DenIM on Signal, an instant messag-
ing system that supports two different protocols: regular
Signal, and our deniable variant of Signal, Deniable Instant
Messaging (DenIM). DenIM is a centralized IM protocol
with both the cryptographic guarantees of the Signal pro-
tocol, and transport layer privacy for messages. In DenIM
on Signal the deniable protocol, DenIM, piggybacks on
an unmodified version of Signal.

At a high level, DenIM on Signal provides users with
two communication abstractions: sending ‘regular’ Signal
traffic that is not resilient to traffic analysis, and sending
‘deniable’ Signal messages that come with transport layer
privacy. To prevent an adversary from trivially inferring
which users are communicating, DenIM on Signal uses
a simple centralized architecture where traffic is routed
through a trusted server. The server forwards the regular
Signal traffic immediately, and stores the DenIM traffic
until there is regular traffic for the intended recipient to
piggyback on. To prevent an adversary from tracing traffic
by fingerprinting it as it is forwarded by the server, the
traffic between clients and server is sent over TLS.

4

We model and prove the security of our implementation
in Section 5, and empirically evaluate how bandwidth
overhead affects system performance both for deniable
and regular traffic in Section 6.

4.1. Protocol details

In this section we elaborate on the technical details of
DenIM. We explain how the deniable part of a network
message is created (Section 4.1.1), how and where deniable
parts get buffered (Section 4.1.2), and which content can be
carried in the deniable part i.e., what deniable actions are
supported by DenIM (Section 4.1.4). DenIM is a variant of
Signal – we make a minor change to the Signal protocol
(Section 4.1.3) to ensure that DenIM is a deniable variant of
Signal (the standard Signal protocol would otherwise leak
information about a user’s deniable sessions), but otherwise
encapsulates Signal. We stress that this modification does
not impact the cryptographic security.

Communication flow by example. Figure 1 presents an
example of communication flow in DenIM on Signal. Alice
(upper left) has queued a deniable message (D) waiting to
be sent to Dorothy (lower right). As Alice sends a regular
message R1 to Bob (upper right), part of Alice’s deniable
message for Dorothy, D1 is added to the deniable padding.
The server immediately forwards the regular message to
Bob, and as there are no deniable messages queued for
Bob, the message is padded with dummy padding. Next,
Charlie (lower left) sends a regular message R2 to Dorothy.
The server forwards the regular message to Dorothy, and
adds part of Alice’s deniable message that has been queued
on the server to the padding of the message for Dorothy.
Where relevant, the internal steps are ordered to avoid
timing leaks; for example, queuing of the deniable message
(2c), takes place after forwarding (2b).

4.1.1. Deniable padding. The size of the deniable part
of a network message is l · q, where l is the length of the
regular part, and q is a system-wide padding parameter set
by the server. Both l and q are publicly known. Because
of the strict size limit on the deniable part, deniable
communication is chunked to fit the deniable part. If
there is no deniable communication (or its length is less
than l · q), the deniable part is padded to always reach
length l · q.

4.1.2. Deniable buffers. Each client keeps a deniable
buffer to allow the user to queue new deniable messages
at any time. Any time the user sends a regular message,
l · q bytes of the oldest deniable message in the buffer are
added as padding to the regular message.

The server keeps one deniable buffer per user. When
receiving a message, the server extracts the regular part of
the message, and creates a new message for the receiver
and adds a deniable part – either from the recipient’s
deniable buffer or dummy padding. Note that depending
on the implementation strategy, there may be subtle timing
channels here. In particular, it may be desirable to handle
the deniable parts of the incoming message only after the
response has been processed. This is because differences
in timing could leak information about the deniable part –
such as how many deniable actions were piggybacked. We

elaborate more on potential side-channels and mitigation
strategies in Section 7.

4.1.3. Changes to Signal. A known (and often overseen)
weakness of Signal is that if a user runs out of ephemeral
keys, new sessions are initialized with less randomness by
reusing the mid-term key instead of a one-time use key.
Standard Signal mitigates this issue by letting users refill
ephemeral keys at any point in time to avoid running out
of keys.

However, if the key distribution center (KDC) were to fail
to return a deniable ephemeral key for a user because they
have run out of keys, it would leak information about the
number of deniable sessions a user has. Therefore, the
number of deniable ephemeral keys each user stores in
the KDC must be secret to the adversary. To limit traffic
between the KDC and the user, and still maintain the
randomness for the generation of the master secret, DenIM
lets the KDC generate new deniable ephemeral keys on
the behalf of the user. To keep the KDC and client in sync,
the client provides a seed for the KDC to be used as input
for a deterministic key generator upon user registration.
The KDC keeps a counter for how many times the key
generator has been used, and the value of the counter
is sent to the corresponding client with each deniable
message. We stress that this change to Signal still means
that the deniable messages will be end-to-end encrypted
between sender and recipient – the server will at most have
access to one of the three keys (the ephemeral one) used
to generate the master secret. This change means that the
KDC in our protocol requires more trust than in standard
Signal, but it still cannot impersonate users.

4.1.4. Supported deniable actions. In DenIM we support
all actions needed to implement the Signal protocol’s ses-
sion initialization and double ratchet mechanism. However,
we do not support all functionality that the Signal IM app
supports. For example, we do not support group chats and
video calls. Additionally, we have intentionally chosen
not to support specific functionality to prevent adversaries
from learning about users’ deniable behavior. First, we do
not support read receipts for messages, since they leak to
an adversary if or when a user receives a deniable message.
Second, we support users blocking other users, but with
the twist that blocked users are not informed that they have
been blocked. An adversary that could learn that they have
been blocked can for example flood a user with messages
to provoke the user into blocking them, and the adversary
can then use the time of being blocked to infer that a user
has received their deniable messages, which also leaks that
the user’s deniable buffer has been drained.

In order to use DenIM, each user needs to upload Signal
keys and a seed for the key generator to the KDC through
registering. We support the following deniable Signal
actions:

Key exchanges. Users can send key requests to initiate
new Signal sessions, and the server responds with a key
response containing the user’s public identity key, mid-
term key, and crucially, always an ephemeral key unlike in
standard Signal where the KDC may run out of ephemeral
keys. While the KDC always provides ephemeral keys

5

Charlie Dorothy

R2

3a pad upstream

3b send Server 4b forward

4a pad downstream

D2R2 R2

dummy padding

Alice Bob

R1

D1R1

|D1| = |R1| * q

D

1a pad upstream

1b send

R1

2b forward

D1

queue

2a pad downstream
dummy padding

|D2| = |R2| * q

to Dorothy

to Bob

to Dorothy

queue/Dorothy 2c

queue/Bob

Figure 1: Diagram representation of the communication flow in DenIM. R and D denote regular and deniable
communication, respectively. Odd steps (1 and 3) are performed by clients, even steps (2 and 4) are performed
by the server. All communication to/from the server is TLS encrypted.

as part of the key material, users can also issue key
refills.

User message. Signal messages containing ciphertext and
Signal headers to support ratcheting.

Block request. Enforced by the server by silently drop-
ping messages by blocked users instead of buffering
them.

5. Formal analysis

This section presents the security and privacy analysis
of DenIM on Signal. In this formal privacy analysis
we abstract away the details of the internal state of the
unmodified version of Signal, which allows for a cleaner
modeling using an abstract centralized protocol. Due to
space, the full formal model and accompanying proofs are
available in Appendices A, B and C.

5.1. Cryptographic guarantees

From the cryptographic point of view, DenIM is an
instance of Signal. Since our protocol does not alter the
mechanisms employed to derive key material, encrypt, and
decrypt messages, it trivially satisfies the cryptographic
guarantees offered by the Signal protocol. More formally,
since the security analysis of Cohn-Gordon et al. [4]
rules out ephemeral key refill issues, it applies to DenIM
as well. This is straightforward for regular traffic, since
DenIM ephemeral keys are refilled as in Signal for regular
messages. For deniable ones we fall back to use a secret
seed shared between a user and the KDC. Employing a
secure pseudo-random generator (PRG) to derive deniable
ephemeral keys from the seed brings us to the setting of
Cohn-Gordon et al.’s security analysis, since we assume
the server to be honest.

5.2. Protecting deniable behavior

To ensure privacy against the network level adversary
described in Section 3.1, we need to secure the two

channels: the network, and the shared state. Ultimately,
an adversary will examine network messages to try to
distinguish dummy padding from deniable content, and
observe the traffic patterns as well as trying to access shared
states to infer something about a target user’s deniable
behavior.

Making deniable traffic indistinguishable. Part of secur-
ing the network relies on guaranteeing that the adversary
cannot fingerprint the deniable part of network messages –
for this we need a TLS-like connection between each client
and the server. TLS, however, is not sufficient, since the
adversary can participate in the protocol themselves, and
it is important they do not infer anything about deniable
behavior of other users through such participation.

Protecting traffic patterns and shared states. We need
to prove that a user’s deniable behavior, which is reflected
by the deniable protocol’s internal state both client-side
and server-side, does not leak into the regular protocol’s
state and becomes visible on the network or in the server’s
state.

The key technical insight of our approach is that by
developing a fine-grained formal model of the deniable
protocol and the tunnel, we can formulate the privacy
problem as a form of noninterference [53] property, where
the confidential input to the system is users’ deniable
behavior. This allows us to leverage state-of-the-art formal
machinery for information flow to precisely characterize
the guarantees of the deniable protocol. The main result
of our analysis is crystallized at the end of this section as
Theorem 1.

The model formalizes both client and server behavior in
DenIM, but abstracts away the details of the tunnel that
constitutes the regular part of a network message. For
simplicity, we model the message forwarding server and
the KDC as one ‘server’ network node. To model Signal’s
double ratchet mechanism as part of our deniable protocol,
we introduce a notion of abstract ratchets, drawing on
the techniques from the literature on symbolic cryptogra-
phy [54]. Abstract ratchets turn out to be a particularly
fitting technical gadget to reason about important privacy

6

guarantees of DenIM, without diving into probabilistic
modeling. The rest of the section highlights some of the
aspects of the formal model.

5.2.1. Communication model. Our communication model
uses the notion of upstream and downstream messages.
Intuitively, upstream events are the events that flow in
the direction of the server, e.g., sending a message, or
registering a user. Downstream events are the events that
flow from the server to a client. Each message consists of
the client node designation n, the host protocol payload
ρ that we abstract away from, and a DenIM event ξ.
Additionally, downstream messages include the counter
c for synchronizing clients key generation with server-
generated keys introduced in Section 4.1.3. We use meta
variable α for messages.

α ::= denimup(n, ρ, ξ) | denimdn(n, ρ, ξ, c)

DenIM events correspond to the supported deniable actions
(cf Section 4.1) and the corresponding server responses.
The events contain information about the originator and
the potential destination, as well as associated information,
such as symbolic keys k and symbolic ratchet tokens tok .
Here, we assume that keys are elements of the abstract
key space K.

Ratchet tokens are sets of the form:

{(n1, k1), (n2, k2), (x, y)}

and correspond to an active session between nodes n1

and n2, using k1 and k2 that are used for initiating
the session. Coordinates (x, y) correspond to the Signal
message coordinates as described in Section 2.2.2.

Without loss of generality, we assume that all deniable
events, including dummy padding, are of the same length.
This allow us to omit the actual payload from the events
grammar, and instead rely on payload confidentiality that
we get from Signal. The following grammar describes
DenIM events:

ξ ::= send(n → n, tok) | fwd(n → n, tok)

| refill(n, k) | kreq(n for n) | kresp((n, k) for n)
| block(n by n) | •

Here, the event send(n1 → n2, tok) corresponds to the
upstream event of sending a deniable message from n1 to
n2. Once received by the server, the server forwards it to
the destination as fwd(n1 → n2, tok).

Based on the event grammar, we define a few auxiliary
functions.

Definition 1 (Upstream and downstream events; event
sender and receiver). Given an event ξ we define event
direction, denoted as dir(ξ), and event sender and receiver,
denoted as snd(ξ) and rcv(ξ), respectively, as per Table 2.

We lift these functions to messages, so we write, e.g.,
dir(α) to get the direction of message α.

Next, we introduce the notion of traces, and their local
projections.

Definition 2 (DenIM trace). A DenIM trace, denoted as
τ , is a sequence of DenIM messages α1, . . . , αn. Empty
traces are denoted as ϵ.

We use · to denote trace concatenation.

Definition 3 (Local trace projection). Given a trace τ ,
and a node n, define local trace projection, written ⌊τ⌋n,
to be the subtrace of τ consisting only of messages that
are local to n. It is defined inductively as ⌊ϵ⌋n = ϵ, and

⌊α·τ⌋n =

α·⌊τ⌋n if dir(α) =↑ ∧ snd(α) = n

∨ dir(α) =↓ ∧ rcv(α) = n

⌊τ⌋n otherwise

To model users’ deniable behavior, we introduce the
notion of strategies [55]. A strategy ω is a function that
takes a user-local view of the trace and decides the next
upstream event. These decisions eschew low-level details
of ratcheting, instead only providing information about the
kind of the event κ given by the following grammar.

κ ::= SEND n | REFILL | KREQ n | BLOCK n | •

Event kinds and events are related by function kind(ξ),
defined in Table 2. Next, we define a notion of strategy
validity, which allows us to qualify user behavior.

Definition 4 (Strategy send validity). Given a set of
adversary nodes N, and a strategy function ω that runs
on node n, say that this strategy is send-valid w.r.t. N, if
the following conditions hold for all traces τ :

Send well-formedness if ω(τ) = SEND ndest then τ
must contain message α such that either

• α = denimdn(n, ρ, kresp((ndest , k) for n), c), or

• α = denimdn(n, ρ, fwd(ndest → n, tok), c)

DenIM send validity if ω(τ) = SEND ndest or ω(τ) =
KREQ ndest for some node ndest , then ndest /∈ N.

Send well-formedness is a technical requirement that
ensures that the strategy follows the basic mechanics of
the Signal protocol, since DenIM is a variant of Signal.
In order to send a message to ndest , we either need to
have obtained the key material from the server to initiate
the session, or ndest needs to have initiated the session
already. We note that there is no loss of generality in
restricting the adversary to Signal messages in our model.
All malformed deniable messages to the server will be
dropped (in that way, they are morally equivalent to dummy
messages); all malformed messages to the client will be
dropped following the Signal rules.

DenIM send validity states that non-malicious nodes do not
communicate with the adversary. This is a critical constraint
that is important for the DenIM privacy theorem. The
following example demonstrates an attack that is possible
if DenIM send validity does not hold.

Example attack. Consider a system with three users:
Alice, Bob, and the adversary, Eve. We assume that Eve
observes all the network traffic, including messages from/to
Alice/Bob via the server. Consider the trace consisting of
the following messages.

7

ξ dir snd rcv kind Description

send(n1 → n2, tok) ↑ n1 n2 SEND n2 Send a message from n1 to n2 with the ratchet token tok
fwd(n1 → n2, tok) ↓ n1 n2 Forward a message from n1 to n2 with the ratchet token tok
refill(n, k) ↑ n REFILL Upload keys k belonging to n
kreq(n1 for n2) ↑ n2 KREQ n1 Request key belonging to n1 to be sent to n2

kresp((n1, k) for n2) ↓ n2 Key response with key k belonging to n1 sent to n2

block(n1 by n2) ↑ n2 BLOCK n1 Block n1 from messaging n2

• • Dummy event, used when there is no deniable communication to send or forward

TABLE 2: Auxiliary functions on unobservable events.

1) Alice sends a message to the server α1 =
denimup(Alice, ρ1, ξ1) with some host payload ρ1.
Eve observes α1, but does not know whether ξ1 is a
deniable message for Bob or not. If ξ1 is for Bob, it
would mean that ξ1 must be queued on the server.

2) Eve requests Bob’s key material from the server: α2 =
denimup(Eve, ρ2, kreq(Bob for Eve)).

3) The server responds to Eve with
Bob’s key k1 via message α3 =
denimdn(Eve, ρ3, kresp((Bob, k1) for Eve), c1).

4) Eve uses k1 to initiate a deniable session with Bob.
Eve generates their own key k2 and a symbolic
ratchet token tok1 = {(Eve, k2), (Bob, k1), (0, 0)}.
Here, (0, 0) are the Signal coordinates of the mes-
sage. Eve constructs a deniable message ξ2 =
send(Eve → Bob, tok1), and sends message α4 =
denimup(Eve, ρ4, ξ2). Upon receiving this message,
the server must queue ξ2.

5) The server sends a message α4 =
denimdn(Bob, ρ5, ξ3, c2) to Bob. Here ξ3 is
either ξ1, in case it was not dummy, or ξ2.

6) There are no other downstream messages to Bob up
until this point.

Suppose that ξ1 is dummy, and Bob receives Eve’s mes-
sage ξ2. If Bob replies to it, they must construct a token
tok2 = {(Eve, k2), (Bob, k1), (1, 0)}, Note the change in
coordinate 1 here. When Eve receives this message they
know that Bob has received ξ2, because of the change in the
ratchet coordinates. In particular, these ratchet coordinates
cannot correspond to Bob reaching out to Eve on their
own. Because there are no other downstream messages to
Bob, Eve knows that the only way ξ2 can be forwarded
to Bob is in step 5, which means that Alice’s ξ1 must be
dummy!

The attack relies only on the ordering of the events to
up to the Bob’s reply. The actual trace may otherwise be
infinite.

This example shows the importance of the DenIM send
validity requirement. A similar example can be constructed
for allowing users to request the adversary’s keys. Note
that blocking an adversary is allowed by Definition 4. The
reason is that unlike sending a message to the adversary
or requesting their key, the server does not propagate these
events to the blocked users – adversaries do not learn that
they have been blocked.

Note that our provable methodology means that DenIM is
secure against all attacks that fall within the threat model,
not just the example above. In fact, the example above has
been discovered during the proof process.

A final technical aspect of strategy validity is that we re-
quire strategies to be deterministic w.r.t. formal randomness.
Intuitively, strategies may differentiate among keys, but
cannot depend on the actual bit representation of the keys.
This reflects the probabilistic nature of generated keys,
and is a natural requirement in symbolic cryptographic
models.

5.2.2. System state. At the top level, our system is
represented as network configurations of the form ⟨S,U , τ⟩,
where S is the server state, U is a collection of user states
of the form ω;σ, where ω is the user deniable strategy,
and σ is the user’s local Signal state that contains the
necessary information for session bookkeeping. Finally, τ
is the global trace produced so far.

We formally define user and server state, respectively, as
follows.

Definition 5 (User local Signal state). A user state σ is
a tuple ⟨n,L,M,R, s, c, g⟩, where n is the identity of the
user, L and M are sets containing the user’s own keys
or keys of other users paired with a state of the form
(k, fresh) or (k, used), R is the abstraction of a ratchets
mapped by receiving users to (w, {k1, k2}, I) containing
the starting index assigned to the user, the initiating keys,
and the observed message indices I , s is a seed for the
deterministic random number generator, c is a formal
randomness counter for the server-side key generation,
and g is the formal randomness counter for the client-side
key generation.

Definition 6 (Server state). A server state is represented
by a tuple ⟨H, rq , D⟩ where H represents the state of an
arbitrary host protocol, rq is a list of outgoing regular
messages, and D represents the deniable state. The deni-
able state is a mapping of a user to a tuple of the form (s,
c, K, B, dq), where s represents a seed for a deterministic
random number generator, c a counter, K a set of keys, B
a set of blocked users, and dq a list of DenIM payloads.

The notion of validity is lifted to user configurations:
strategies of non-adversarial nodes must be valid, written
valid(U | N) which means means Definition 4 holds for
all users U and adversaries N. We assume that all users
are initially registered on the server with their respective
secret seeds.

5.2.3. System transitions. Figure 2 captures the top-
level interaction between users and the server, where each
unique arrow type indicates a state transition. It shows
how the system is updated when a user sends a message,
α. Figure 3 presents selected rules for the upstream user
state transitions ω;σ

τ,α
↣ ω;σ′. Here, τ is the trace of the

8

Net-Global
U = u1 . . . uj . . . un uj

τ,α
↣ uj

′

U ′ = u1 . . . uj
′ . . . un S ⇒

α
S ′

⟨S,U , τ⟩ −→ ⟨S ′,U ′, τ ·α⟩

Figure 2: Network transitions, showing how the server,
user, and trace state is updated when a message α is sent

Aux-Upstream-User-Event
σ = ⟨n,L,M,R, s, c, g⟩ σ99K

ξ
σ′

α = denimup(n, ρ, ξ) ω(⌊τ⌋n) = kind(ξ)

ω;σ
τ,α
↣ ω;σ′

Aux-Upstream-User-•
σ = ⟨n,L,M,R, s, c, g⟩

α = denimup(n, ρ, •) ω(⌊τ⌋n) = •

ω;σ
τ,α
↣ ω;σ

Figure 3: Auxiliary user transitions: selected rules showing
how the state of the user strategy ω and local Signal state
σ is updated when sending new events or dummy traffic
in the message α

system so-far, and α is the new upstream message. The
host protocol payload ρ is chosen non-deterministically,
while the DenIM event is constrained by the strategy
function ω. The subtlety of these rules is that the strategy
determines only the kind of the next deniable message, but
not their exact content, because the latter depends on the
ratchet coordinates. There are two advantages of having
the strategies define only the kind of the event and not
its full content. First, this keeps the notion of strategy
well-formedness simple; it would otherwise have to rule
out nonsensical sequences of ratchet coordinates. Second,
as a modeling device, it is also conceptually more truthful
to capturing the user intent, e.g., the one of sending a
message rather than sending a message with particular
ratchet indices. Finally, note that we use two rules for the
upstream messages. When the user strategy returns dummy,
•, we do not update the user local Signal state. Note the
clause σ99K

ξ
σ′ in the rule (Aux-Upstream-User-Event) and

its lack in the rule (Aux-Upstream-User-•).

Our main theorem states that all valid DenIM strategies
are possible. It is formulated as a noninterference theorem
on strategies. We write ≃N when two configurations or
traces are indistinguishable by the adversary.

Theorem 1 (Unobservability of deniable messages in
DenIM). Consider a set of adversary nodes N, and two
initial indistinguishable configurations ⟨S1,U1, ϵ⟩ ≃N

init

⟨S2,U2, ϵ⟩, with valid user strategies, that is valid(Ui |
N), i = 1, 2. If ⟨S1,U1, ϵ⟩ −→∗ ⟨S ′

1,U ′
1, τ1⟩ then

⟨S2,U2, ϵ⟩ −→∗ ⟨S ′
2,U ′

2, τ2⟩, such that τ1 ≃N τ2.

Proof. By induction on the length of τ1 using Lemma 1
(see Appendix A).

Note that the guarantee of Theorem 1 allows arbitrary
collusion of the adversarial nodes within the set N.

6. Empirical evaluation

To evaluate the feasibility and performance of DenIM,
we have created a proof-of-concept implementation of
DenIM on Signal and designed experiments to measure the
system’s behavior when running on a real network.

6.1. Implementation

Our DenIM implementation runs on NodeJS. It amounts
to 3838 lines of TypeScript code1, using the Signal app’s
open-source implementation 2 of the Signal protocol and
their TypeScript bindings (developed for the official Signal
Desktop Client). We implement three types of network en-
tities: a dispatcher server that orchestrates the experiments
and injects code in the clients to simulate different user
behaviors, a DenIM server which handles messages and
also acts as a KDC, and DenIM clients.

6.1.1. Network messages. Crucial to achieving DenIM’s
unobservability of deniable traffic is producing network
traffic that does two things: 1) ensures that dummy padding
is indistinguishable from encrypted deniable payloads, and
2) ensures that any given padding size can be precisely
achieved. To achieve 1), we use TLS sockets for client-
server communication, and to achieve 2) we have designed
own message formats to ensure that padding serializes to
the right size.

To represent and serialize objects, we use Google’s protocol
buffers [56] – a language and platform-agnostic mecha-
nism for serializing structured data that is also used by
the official Signal implementation. All communication
is packaged within a DenimMessage structure (see
Listing 1) before being serialized and sent over an en-
crypted TLS connection. Regular communication is stored
within RegularPayload structure, the ratio of deniable
padding to use is communicated by the server using q, and
c is used by the server to keep the client’s and server’s
deniable ephemeral key generator in sync. The deniable
communication is chopped up to fit within the allotted
deniable padding, and stored in the field chunks on the
DenimChunk structure (Listing 2). Since the deniable
padding needs to be a fixed size and Google’s protocol
buffers use varint encoding, we use two additional ballast
fields to be able to vary the length of the serialized object
by one byte.

1 message DenimMessage {
2 required RegularPayload payload
3 optional double q //server -> client
4 optional int32 c //server -> client
5 repeated DenimChunk chunks

1. https://github.com/Niteo/denim-on-signal
2. https://github.com/signalapp/libsignal

9

https://github.com/Niteo/denim-on-signal
https://github.com/signalapp/libsignal

6 required int32 ballast;
7 optional int32 extra_ballast;
8 }

Listing 1: Network message serialization format.

1 message DenimChunk {
2 required bytes chunk
3 required int32 flags
4 }

Listing 2: Chunk serialization format.

6.1.2. Randomized key labels. In the implementation of
Signal, each ephemeral key is labeled with an identifier to
allow for quick matching of keys. The number of sessions a
user has is not secret in regular Signal, so this identifier may
be assigned sequentially. In DenIM, however, assigning
identifiers sequentially would leak to anyone requesting
ephemeral keys from the KDC how many ephemeral keys
the client has generated. To mitigate this leakage in DenIM,
we assign random identifiers to deniable ephemeral keys.
Since the KDC can generate deniable ephemeral keys as
well, the client and KDC stays in sync by providing a seed
to generate a deterministic sequence of identifiers when
registering with the KDC. Whenever the KDC sends a
counter value higher than the client’s current counter value,
the client generates the corresponding amount of deniable
ephemeral keys and identifiers using the two deterministic
generators. To avoid identifier collisions, the output space
is segmented into identifiers that can be used solely by the
client, and solely by the server.

6.2. Experimental setup and design

Each experiment run consists of one DenIM server running
on a dedicated machine, multiple clients evenly spread
across four machines, and one dispatcher server. The
DenIM server is a remote machine with a dedicated 8
core 2.50GHz CPU and 64GB RAM running Ubuntu, and
the clients are virtual machines running Ubuntu on 4 core
2.49GHz CPUs with 8GB RAM. The dispatcher server
is a virtual machine running Ubuntu on 4 core 2.29GHz
CPUs with 8GB RAM.

We have designed our experiments to evaluate the DenIM’s
performance at high CPU loads, in the range of 80%-90%
CPU utilization. Using the CPU utilization goal, we have
tuned the number of clients to 20, and the client events to
occur every tick of 20 ms. Every experiment run presented
here is 60 seconds – as we have seen no empirical changes
in the system behavior in longer runs, up to 30 minutes.
Each client establishes a TCP connection with the DenIM
server and performs the following steps:

1) Registers the user.
2) Every 20 ms (tick), the clients does the following:

a) sends a given amount (See Tables 3 and 4) of
regular messages, to randomly chosen recipients.

b) sends a given amount (See Tables 3 and 4) of
deniable messages, to randomly chosen recipients.

Each message consists of a 52 characters long delimited
timestamp to measure latency, and a randomly chosen
quote of mean length 57 characters, making messages 109
characters long on average.

To evaluate the performance impact of deniable traffic, we
vary the variable q (experiment settings in Table 3) that
determines the amount of deniable traffic carried by regular
traffic, and the proportion of deniable messages generated
in relation to regular messages (experiment settings in
Table 4). We empirically establish that the size of a deniable
message is approximately 1.2 the size of a regular message
with the same plaintext, so when when increasing the ratio
with 0.1 we vary q using steps of 0.12.

Id q Regular msgs/tick Deniable msgs/tick

A1 0 10 0
A2 0.12 10 1
A3 0.24 10 2
A4 0.36 10 3
A5 0.48 10 4
A6 0.6 10 5
A7 0.72 10 6
A8 0.84 10 7
A9 0.96 10 8
A10 1.08 10 9
A11 1.2 10 10

TABLE 3: Experiment settings with q set in proportion to
the regular and deniable messages ratio.

Id q Regular msgs/s Deniable msgs/s

A6X1 0.6 10 1
A6 0.6 10 5
A6X2 0.6 10 10

TABLE 4: Experiment settings to capture behavior when q
is not set in proportion to the regular and deniable messages
ratio.

During the experiments, we measure CPU utilization, reg-
ular message throughput per second, and the length of the
deniable buffers server-side. Client-side, we measure end-
to-end latency for regular and deniable messages.

6.3. Results

The results for all settings from Table 3 (for all graphs
see Appendix C) show, as expected, that regular message
throughput is higher for lower values of q, which means
lower q gives lower regular message latency. We show
the mean throughput for regular and deniable messages
for each experiment setting in Table 5. For comparison,
CoverDrop [57] empirically has a throughput of 833
(analogous to our deniable) messages per second. Notice
that at q = 1.2 in setting A11, the throughput for regular
and deniable traffic is similar which we expect due to
the additional overhead in deniable messages compared to
regular messages.

In Figure 4 we show the server’s CPU utilization and
the regular message throughput over time for setting A6
where q = 0.6 and the regular to deniable message ratio is
10:5. The shape of the regular message throughput follows
the CPU utilization, with an average of 6544 messages/s
which is approximately 392k messages/min. As we can see,
the mean CPU utilization is 87%, and the spikes in CPU
utilization are correlated with the NodeJS major garbage
collection events. Note that NodeJS’s garbage collection is
concurrent, whereas NodeJS’s runtime is single-threaded;

10

Id Regular msgs Deniable msgs
s per s per min s per s per min

A1 0.014 7527 452k - 0 0
A2 0.021 7299 438k 8.880 549 33k
A3 0.018 7111 427k 2.370 1352 81k
A4 0.024 6888 413k 0.366 2065 124k
A5 0.026 6599 396k 0.177 2638 159k
A6 0.028 6544 393k 0.140 3270 196k
A7 0.030 6338 380k 0.124 3801 228k
A8 0.032 6163 370k 0.0114 4312 259k
A9 0.034 5998 360k 0.0112 4796 288k
A10 0.036 5955 357k 0.111 5356 321k
A11 0.038 5709 343k 0.108 5706 342k

TABLE 5: The mean overhead for latency, throughput
per second, and throughput per minute, for regular and
deniable messages respectively

this can result in CPU loads greater than 100% when
garbage collection is running. CPU load drops initially due
to the clients waiting for key responses before they can
encrypt messages.

(a) CPU load, note that spikes correlate with major
garbage collection (GC) events.

(b) Regular messages processed over time. Higher is
better.

Figure 4: Server statistics at q = 0.6.

In Figure 5 we show a box plot of the latency for regular
messages measured in seconds. The latency increases
when the value of q increases, as the server spends more
time chunking and reassembling deniable payloads. As
a baseline, we have included A1 where q = 0, which
means no deniable traffic. The mean latency for A1
is 0.014s/message, and 0.038s/message for A11 where
q = 1.2.

Figure 5: Client to client message regular latency measure
from q = 0 to q = 1.2 with step 0.12. Lower is better.

For settings with a value of q that corresponds to 1.2 times
the deniable to regular message ratio, e.g. q = 0.6 when
the ratio is 10:5, the deniable buffers get drained and filled
at a similar rate after approximately 10 seconds (see graphs
in Appendix C). When the deniable padding is a relatively
small number (recall that the average message plaintext is
109 characters) in comparison to the size of the DenIM
headers, the deniable buffers can continue to grow on the
server even when q is set in proportion to the deniable to
regular message ratio. In our experiments, this happens at
q < 0.36, i.e. for setting A2 and A3.

When the deniable buffers grow in size on the server, it
contributes to large latency for deniable messages. We
can see this for A2 and A3 in Figure 27b in Appendix C,
with a mean latency of 8.9s for A2, and 2.4s for A3. In
Figure 6 we have adjusted the scale to capture the settings
with q ≥ 0.36, i.e. settings A4 to A11. For A4 to A7 we
see latency decreasing, and remaining stable from A8 to
A11 with a mean latency of 0.11s/message.

Figure 6: Client to client message latency deniable measure
from q = 0 to q = 1.2 with step 0.12. Lower is better.
Notice change in scale.

Notice that each client has their own deniable buffer
on the server, so clients’ latency for receiving deniable
messages depends on how many regular messages they
receive in proportion to deniable messages, and how that

11

proportion relates to the value of q. We use the settings
from Table 4 and show in Figure 7 that a higher proportion
of deniable messages to regular messages than supported
by q (10:10 which would be supported by q = 1.2) results
in growing deniable buffers, and increased latency for
deniable messages. In the same graph, we show that a lower
proportion (10:1 which would be supported by q = 0.12)
allows the server to drain the deniable buffer, and while
it lowers latency, it does not increase the throughput of
deniable messages since there are no deniable messages
for the server to process. A similar fill and drain rate of
the deniable buffers is achieved when q is set to reflect
the difference in regular to deniable message ratio, in this
case 10:5 using setting A6, and as previously shown with
the experiment settings A1 to A11.

Figure 7: Length of deniable buffers when varying regular
to deniable message ratio at q = 0.6.

7. Limitations and future work

This section discusses some current limitations of DenIM
and provides our perspective on how they may lifted. We
also elaborate on how the approach to designing DenIM on
Signal could be generalized to a methodology for designing
data-aware tunneling protocols.

Latency of deniable messages and practical trade-offs.
A conscious design decision behind DenIM on Signal is
to prioritize strong privacy over low latency. This naturally
affects quality of service, and is a design decision we have
taken to reduce the performance overhead of introducing
deniable messages to IM services. A consequence of not
prioritizing low latency is that a deniable message could
remain undelivered, if the recipient has no incoming regular
traffic. In other words, the currently chosen trade-off for
DenIM on Signal supports delivery of deniable messages
for users that also send and receive regular messages, and
is not intended for users who only want to send deniable
messages. We stress that users always are guaranteed
privacy for their deniable messages in our system, whereas
we provide no formal guarantees for utility.

It is possible to alter the trade-off and reduce latency by
introducing additional bandwidth overhead. For example,
we envision that a practical deployment of DenIM on
Signal could feature a subscription feed, a group chat, or
a Telegram-like channel, all of which would facilitate a
steady stream of regular traffic to contribute to draining

the deniable buffers server-side. Along the same lines,
a realistic client can periodically send out heartbeats or
statistical information to the server that can be used to
push deniable messages out of the server.

Support for deniable group chat and deniable video.
In theory, our methodology should also be applicable to
group chats using the Signal protocol, but group chats
would require a slightly different initialization as group
chat needs to include all participants’ keys. Currently,
DenIM on Signal does not support deniable group chats.
We also do not support deniable video chats as they come
with different requirements on performance: video chats
have low tolerance for latency, and the current trade-off in
DenIM on Signal cannot guarantee low latency for deniable
traffic.

Security of the deniable message buffers. The forwarding
server’s deniable message buffer can turn into an attractive
attack target. We note that the messages in the buffer
are end-to-end encrypted, and only include the recipient
information – there is no need for the server to hold on
to the sender information. Still, if the server were to be
compromised, an attacker would gain access to all metadata
currently held by the server. To further harden the system,
one could for example use trusted enclaves to protect the
state of the buffer, as proposed by Ahmed-Rengers et al.
in CoverDrop [57].

Side-channels. DenIM on Signal is designed to handle
certain potential timing leaks, but not all as they are outside
the scope of this paper. For example, deserializing and
queueing a deniable message would take longer time than
inspecting and throwing away dummy padding. The order
when forwarding messages is therefore important in DenIM
on Signal: outgoing messages need to be padded with
a deniable event (that may be dummy) and forwarded
before the incoming deniable event can be processed and
queued (unless it is a dummy event), as it would otherwise
introduce a timing side-channel. Full protection against
side-channel attacks require protection mechanisms that
pierce through the entire stack from compiler, to runtime,
through the operating system and lastly to the CPU,
focusing on many instances of the layer-below attacks [58]
and all shared resources [59]. We envision that future work
could focus on eliminating side-channels by using e.g.,
predictive mitigation [60], [61], [62], with techniques that
require compiler support [63] and runtimes [64], [65], [66],
[67] and novel hardware [68].

Communicating with the adversary. While our current
assumption of users not communicating with the adversary
aligns with the threat model of IM apps – e.g., Signal
and WhatsApp both warn users from communicating with
untrusted parties rather than enforce the assumption –
future work may focus on lifting this assumption. Because
this will break noninterference, the top-level security con-
dition will need to be weakened. Here, we anticipate that
either techniques from quantitative information flow [69] or
declassification [70], [71], [72] can provide useful security
characterizations.

Utility guarantees. Our current system provides formal
guarantees for privacy, but not utility. Future work could
focus either on formally modeling user behavior to provide

12

utility guarantees, or on extending the empirical evaluation
to include real user data. Acquiring real IM data is difficult
since it is highly sensitive data that is not publicly available
– previous work such as Bahramali et al. [32] have instead
collected (but not released) data from alternate sources,
namely public Telegram channels. While such alternate
data is possible to collect, although not from Signal as
Signal does not support public channels, we expect public
channel chats to significantly differ from our intended use
case which is one-on-one chats. In particular, channels
allow a small group of admins broadcast messages to a
large crowd, whereas group chats or one-on-one chats
puts no restrictions on who can send messages. As such,
the collection of quality data from IM usage would be a
valuable, non trivial contribution for future work.

Parameter tuning. The only parameter in our design that
needs tuning in a real-world deployment is the padding,
q. We stress that this parameter should be global and
not be personalized, as individual choice of q can be
discriminating [32].

Generalizing the methodology. While this paper focuses
on building a specific system for IM, DenIM on Signal,
we anticipate the approach to translate into a generalized
methodology to use IFC techniques for anonymous com-
munication problems.

We believe that a form of noninterference is a desirable
baseline property even when systems do not use an
observable tunnel (in our case unmodified Signal). As our
example attack in Section 5.2.1 shows that naı̈vely running
a protocol on top of an unobservable tunnel, for example
DC-nets, can still result in leakage on the application
layer. Future work should investigate secure composition
of guarantees from different layers.

8. Related work

Anonymous communication. We review the related litera-
ture through the categorization in Table 6. This categoriza-
tion is based on five dimensions. First, tunneling: “does
the approach tunnel traffic using an innocuous protocol?”.
Second, censorship resilience: “is the design intended to be
difficult to detect and block?”. Third, provable guarantees:
“is privacy formally proven, and in that case, on what level
of the network stack are the security guarantees?”. Fourth,
trust: “what part of the network is considered trusted?”.
And last, threat model: “what are the capabilities of the
adversary?”.

Related work fall into four main clusters. The first clus-
ter provide provable guarantees on the transport layer,
achieved mainly using DC-nets and mixes. None of these
approaches consider application layers, and therefore the
privacy guarantees do not extend to e.g., shared protocol
states.

The second cluster is similar to the first, but instead the
works here give probabilistic privacy guarantees, which
allows them to achieve either lower latency or band-
width but not both. This limitation is in line with the
anonymity trilemma of Das et al. [100]. Most of the
work from the second cluster offer probabilistic guarantees
via differential privacy [101], which makes meaningful

longitudinal privacy challenging as privacy degrades with
each iteration.

The third clusters include designs focusing on low latency,
using mixnets and onion routing. None of these offer
any provable privacy guarantees, and e.g. Tor [94] has
been shown to be vulnerable to many deanonymization
attacks [18].

The last cluster consists mainly of cover protocols and
steganography techniques. Most of these work have strong
trust assumptions, and weaker adversaries than the work
that does not offer strong censorship resilience. Unfor-
tunately, none of them provide any provable privacy
guarantees on the traffic shape of the protocol acting as
the tunnel. In contrast, the work in this paper maintains
the traffic shape of the tunneling (’regular’) protocol by
design, which we prove in Theorem 1.

DenIM is the only work that combines both strong censor-
ship resilience with provable privacy guarantees. Moreover,
this work is the only that models the information flows on
the application layer when constructing the proof. With our
instantiation DenIM, the simplicity of the design comes
at the cost of a centralized server. The closest work is
by Howes IV et al. [102], which proposes a framework
to formalize and analyze tunneled traffic on the transport
layer, to protect against global passive adversaries.

Relation to work on the Signal protocol. Initial work
related to Signal included formalizing the protocol in terms
of cryptographic primitives and proving its security under
minimal trust assumptions [4], [103], [104], [105]. Over
time the attention has shifted towards other aspects as
well, including implicit versus robust authentication [106],
[107]; and offline cryptographic deniability [108], [109],
[110]. The latter line of research is closest to this work.
The state-of-the-art on this matter is that, from the cryp-
tographic perspective, the Signal protocol only provides
offline deniability [109] (transcripts provide no evidence
even if long-term key material is compromised); but no
online deniability [108] (outsiders can obtain evidence
of communication). We bypass this impossibility result
by assuming receivers of deniable messages to be honest,
and making deniable messages unobservable at a network
level, thus strengthening the deniability claims achieved
by DenIM in comparison to standard Signal.

Strategies. Our use of strategies for modeling privacy is
inspired by their application in the literature on information
flow for concurrent programs [55], [111]. For deterministic
settings, it is not necessary to involve strategies [112],
and simpler stream model of user behavior [71] is suffi-
cient.

9. Conclusion

This work introduces DenIM on Signal, an instant mes-
saging system that provides different privacy guarantees
for messages in the same system: either with or without
metadata privacy We show that it is possible to design
and run a state-of-the-art, stateful protocol that guarantees
provable metadata privacy. Specifically, we design a vari-
ant of the Signal protocol, Deniable Instant Messaging
(DenIM), and show that subtle changes – all caught by

13

Protocol Tunneling Censorship resilience Provable guarantees Trust Threat model

DC-nets [73] No Weak Transport layer Anytrust GA
Dissent [27] No Weak Transport layer Anytrust GA
Anonycaster [74] No Weak Transport layer Anytrust GA
Riffle [75] No Weak Transport layer Anytrust GA
Atom [76] No Weak Transport layer Anytrust GA
Talek [77] No Weak Transport layer Anytrust GA
Herd [78] No Weak Transport layer Chosen set GP/LA
Pynchon [79] No Weak Transport layer Fraction GA
XRD [80] No Weak Transport layer Fraction GA
Express [81] No Weak Transport layer Fraction GA
P 3 [82] No Weak Transport layer Honest-but-

curious/Malicious
GA

Loopix [83] No Weak Transport layer Honest-but-curious GA
Bitmessage [84] No Weak Transport layer Zero-trust GA
Pung [85] No Weak Transport layer Zero-trust GA
Riposte [86] No Weak Transport layer Zero-trust*** GA
Verdict [87] No Weak Transport layer* Anytrust GA
Stadium [88] No Weak Transport layer* Anytrust GA
Vuvuzela [28] No Weak Transport layer* Fraction GA
Alpenhorn [89] No Weak Transport layer* Fraction GA
Karaoke [29] No Weak Transport layer* Fraction GP
Yodel [90] No Weak Transport layer** Fraction GA
Groove [91] No Weak Transport layer* Zero-trust GA
Mixminion [92] No Weak – Chosen path GA
HORNET [93] No Weak – Fraction LA
Tor [94] No Weak – One**** GP

DenIM Yes Strong Application layer Centralized GA

CoverDrop [57] Yes Strong – Centralized GP
Cirripede [95] Yes Strong – Proxies LA
Telex [96] Yes Strong – Proxies LA
CensorSpoofer [97] Yes Strong – Proxies LA
FreeWave [35] Yes Strong – Proxies LA
SkypeMorph [98] Yes Strong – Proxy LA
IMProxy [32] Yes Strong – Proxy LA
Protozoa [36] Yes Strong – Proxy LA
Camoufler[37] Yes Strong – Proxy LA
Balboa [99] Yes Strong – Zero-trust GA

TABLE 6: Comparison of related work. Footnotes: *via differential privacy, **with failure probability 10−8 per round,
for privacy, all servers need to be trusted for availability, *in chosen set. G=Global, L=Local, A=Active, P=Passive.

a formal model – to the original protocol are necessary
for privacy. Through our proof-of-concept implementation
DenIM on Signal we showcase how to strike performance
trade-offs for real-world applications – the overhead of
deniable traffic in DenIM is parameterizable through a
variable q, and we empirically show the behavior under
different traffic loads.

Acknowledgments

We thank the anonymous reviewers for their valuable
suggestions for improving the paper. This work was funded
by the Danish Council Independent Research for the
Natural Sciences (DFF/FNU, project 6108-00363). Boel
Nelson was funded by the MSCA European Postdoctoral
Fellowships project 101064140 (ProPriM).

References

[1] WhatsApp, “WhatsApp Encryption Overview Technical white
paper,” Oct. 2020. [Online]. Available: https://www.whatsapp.com/
security/WhatsApp-Security-Whitepaper.pdf

[2] Wire Swiss GmbH, “Wire Security Whitepaper,” 2021.

[3] Facebook Newsroom, “Messenger Starts Testing End-to-End
Encryption with Secret Conversations,” Jul. 2016. [Online].

Available: https://about.fb.com/news/2016/07/messenger-starts-
testing-end-to-end-encryption-with-secret-conversations/

[4] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and
D. Stebila, “A formal security analysis of the signal messaging
protocol,” Journal of Cryptology, vol. 33, no. 4, pp. 1914–1983,
2020.

[5] Y. Fu, H. Xiong, X. Lu, J. Yang, and C. Chen, “Service Usage
Classification with Encrypted Internet Traffic in Mobile Messaging
Apps,” IEEE Transactions on Mobile Computing, vol. 15, no. 11,
2016.

[6] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust
Smartphone App Identification via Encrypted Network Traffic
Analysis,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 1, 2018.

[7] R. S. Raman, A. Stoll, J. Dalek, R. Ramesh, W. Scott, and R. Ensafi,
“Measuring the Deployment of Network Censorship Filters at
Global Scale,” in NDSS, 2020.

[8] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver, and
V. Paxson, “Examining How the Great Firewall Discovers Hidden
Circumvention Servers,” in IMC, 2015.

[9] Johns Hopkins University, “The Johns Hopkins Foreign
Affairs Symposium Presents: The Price of Privacy: Re-
Evaluating the NSA,” Apr. 2014. [Online]. Available: https:
//www.youtube.com/watch?v=kV2HDM86XgI

14

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://about.fb.com/news/2016/07/messenger-starts-testing-end-to-end-encryption-with-secret-conversations/
https://about.fb.com/news/2016/07/messenger-starts-testing-end-to-end-encryption-with-secret-conversations/
https://www.youtube.com/watch?v=kV2HDM86XgI
https://www.youtube.com/watch?v=kV2HDM86XgI

[10] R. Kang, L. Dabbish, N. Fruchter, and S. Kiesler, “”My data
just goes everywhere”: User mental models of the internet and
implications for privacy and security,” in SOUPS, 2015.

[11] P. Story, D. Smullen, Y. Yao, A. Acquisti, L. F. Cranor, N. Sadeh,
and F. Schaub, “Awareness, Adoption, and Misconceptions of Web
Privacy Tools,” PoPETS, vol. 2021, no. 3, 2021.

[12] N. Gerber, V. Zimmermann, and M. Volkamer, “Why Johnny Fails
to Protect his Privacy,” in EuroUSEC, 2019.

[13] G. Norcie, J. Blythe, K. Caine, and L. J. Camp, “Why Johnny
Can’t Blow the Whistle: Identifying and Reducing Usability Issues
in Anonymity Systems,” in Proceedings 2014 Workshop on Usable
Security. San Diego, CA: Internet Society, 2014.

[14] S. Samuel, “China is installing a secret surveillance
app on tourists’ phones,” Jul. 2019. [Online]. Avail-
able: https://www.vox.com/future-perfect/2019/7/3/20681258/
china-uighur-surveillance-app-tourist-phone

[15] K. Wagstaff, “Failing grade: Alleged Harvard bomb
hoaxer needed more than Tor to cover his
tracks, experts say,” Dec. 2013. [Online]. Avail-
able: http://www.nbcnews.com/technolog/failing-grade-alleged-
harvard-bomb-hoaxer-needed-more-tor-cover-2D11767028

[16] Tor Project, “The Tor Project — Privacy & Freedom Online,”
2021. [Online]. Available: https://torproject.org

[17] The Tor Project, “Users – Tor Metrics,” 2021. [Online]. Available:
https://metrics.torproject.org/userstats-relay-country.html

[18] I. Karunanayake, N. Ahmed, R. Malaney, R. Islam, and S. K. Jha,
“De-anonymisation attacks on Tor: A Survey,” IEEE Communica-
tions Surveys Tutorials, 2021.

[19] R. Jansen, T. Vaidya, and M. Sherr, “Point Break: A Study of
Bandwidth Denial-of-Service Attacks against Tor,” in USENIX
Security, 2019.

[20] M. Nasr, A. Bahramali, and A. Houmansadr, “DeepCorr: Strong
Flow Correlation Attacks on Tor Using Deep Learning,” in CCS,
2018.

[21] “How it works.” [Online]. Available: https://www.zbay.app/
how.html

[22] “How it works - Briar.” [Online]. Available: https://briarproject.org/
how-it-works/

[23] “Overview and History - Cwtch Secure Development Handbook.”
[Online]. Available: https://docs.openprivacy.ca/cwtch-security-
handbook/overview.html

[24] “Ricochet Refresh.” [Online]. Available: https://
www.ricochetrefresh.net/

[25] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The Parrot Is
Dead: Observing Unobservable Network Communications,” in
S&P, 2013.

[26] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson,
“Dissent in Numbers: Making Strong Anonymity Scale,” in OSDI,
2012.

[27] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable anonymous
group messaging,” in CCS, 2010.

[28] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich,
“Vuvuzela: Scalable private messaging resistant to traffic analysis,”
in SOSP, 2015.

[29] D. Lazar, Y. Gilad, and N. Zeldovich, “Karaoke: Distributed Private
Messaging Immune to Passive Traffic Analysis,” in OSDI, 2018.

[30] Y. Gilad, “Metadata-private communication for the 99%,” Com-
munications of the ACM, vol. 62, no. 9, 2019.

[31] Electronic Frontier Foundation, “Communicating with
Others,” 2020. [Online]. Available: https://ssd.eff.org/en/module/
communicating-others

[32] A. Bahramali, A. Houmansadr, R. Soltani, D. Goeckel, and
D. Towsley, “Practical Traffic Analysis Attacks on Secure Mes-
saging Applications,” in NDSS, 2020.

[33] T. Perrin, “The Noise Protocol Framework,” 2018. [Online].
Available: https://noiseprotocol.org/noise.pdf

[34] E. Zuckerman, “Cute Cats to the Rescue? Participatory Media and
Political Expression,” in From Voice to Influence: Understanding
Citizenship in a Digital Age. University of Chicago Press, 2015.

[35] A. Houmansadr, T. Riedl, N. Borisov, and A. Singer, “I want
my voice to be heard: IP over Voice-over-IP for unobservable
censorship circumvention,” in NDSS, 2013.

[36] D. Barradas, N. Santos, L. Rodrigues, and V. Nunes, “Poking a
Hole in the Wall: Efficient Censorship-Resistant Internet Commu-
nications by Parasitizing on WebRTC,” in CCS, 2020.

[37] P. K. Sharma, D. Gosain, and S. Chakravarty, “Camoufler: Access-
ing The Censored Web By Utilizing Instant Messaging Channels,”
in ASIA CCS, 2021.

[38] K. O’Neill, M. Clarkson, and S. Chong, “Information-flow secu-
rity for interactive programs,” in 19th IEEE Computer Security
Foundations Workshop (CSFW’06), 2006, pp. 12 pp.–201.

[39] The Radicati Group, inc., “Instant Messaging Statistics Report,
2019-2023,” 2019. [Online]. Available: https://radicati.com/
wp/wp-content/uploads/2019/01/Instant Messaging Statistics
Report, 2019-2023 Exceutive Summary.pdf

[40] Statista, “Most popular global mobile messenger apps as of
October 2021, based on number of monthly active users,”
Nov. 2021. [Online]. Available: https://www.statista.com/statistics/
258749/most-popular-global-mobile-messenger-apps/

[41] J. Kastrenakes, “Apple says there are now over
1 billion active iPhones,” Jan. 2021. [Online].
Available: https://www.theverge.com/2021/1/27/22253162/iphone-
users-total-number-billion-apple-tim-cook-q1-2021

[42] C. Jenik, “Here’s what happens every minute
on the internet in 2021,” Aug. 2021. [Online].
Available: https://www.weforum.org/agenda/2021/08/one-minute-
internet-web-social-media-technology-online/

[43] iXsystems, Inc., “Rick Reed - WhatsApp: Half a billion
unsuspecting FreeBSD users,” MeetBSD California, Nov.
2014. [Online]. Available: https://www.youtube.com/watch?v=
TneLO5TdW M

[44] Telegram, “MTProto Mobile Protocol.” [Online]. Available:
https://core.telegram.org/mtproto

[45] Apple inc., “How iMessage sends and receives
messages securely,” Feb. 2021. [Online]. Avail-
able: https://support.apple.com/guide/security/how-imessage-
sends-and-receives-messages-sec70e68c949/web

[46] S. Salim, “Finally: Snapchat comes up with end-to-end encryption
to secure users conversations and data,” Jan. 2019. [Online]. Avail-
able: https://www.digitalinformationworld.com/2019/01/snapchat-
end-to-end-encryption-users-media-messages.html

[47] M. Marlinspike, “Advanced cryptographic ratcheting,” 2013.
[Online]. Available: https://signal.org/blog/advanced-ratcheting/

[48] ——, “The X3DH Key Agreement Protocol,” 2016. [Online].
Available: https://signal.org/docs/specifications/x3dh/x3dh.pdf

15

https://www.vox.com/future-perfect/2019/7/3/20681258/china-uighur-surveillance-app-tourist-phone
https://www.vox.com/future-perfect/2019/7/3/20681258/china-uighur-surveillance-app-tourist-phone
http://www.nbcnews.com/technolog/failing-grade-alleged-harvard-bomb-hoaxer-needed-more-tor-cover-2D11767028
http://www.nbcnews.com/technolog/failing-grade-alleged-harvard-bomb-hoaxer-needed-more-tor-cover-2D11767028
https://torproject.org
https://metrics.torproject.org/userstats-relay-country.html
https://www.zbay.app/how.html
https://www.zbay.app/how.html
https://briarproject.org/how-it-works/
https://briarproject.org/how-it-works/
https://docs.openprivacy.ca/cwtch-security-handbook/overview.html
https://docs.openprivacy.ca/cwtch-security-handbook/overview.html
https://www.ricochetrefresh.net/
https://www.ricochetrefresh.net/
https://ssd.eff.org/en/module/communicating-others
https://ssd.eff.org/en/module/communicating-others
https://noiseprotocol.org/noise.pdf
https://radicati.com/wp/wp-content/uploads/2019/01/Instant_Messaging_Statistics_Report,_2019-2023_Exceutive_Summary.pdf
https://radicati.com/wp/wp-content/uploads/2019/01/Instant_Messaging_Statistics_Report,_2019-2023_Exceutive_Summary.pdf
https://radicati.com/wp/wp-content/uploads/2019/01/Instant_Messaging_Statistics_Report,_2019-2023_Exceutive_Summary.pdf
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.theverge.com/2021/1/27/22253162/iphone-users-total-number-billion-apple-tim-cook-q1-2021
https://www.theverge.com/2021/1/27/22253162/iphone-users-total-number-billion-apple-tim-cook-q1-2021
https://www.weforum.org/agenda/2021/08/one-minute-internet-web-social-media-technology-online/
https://www.weforum.org/agenda/2021/08/one-minute-internet-web-social-media-technology-online/
https://www.youtube.com/watch?v=TneLO5TdW_M
https://www.youtube.com/watch?v=TneLO5TdW_M
https://core.telegram.org/mtproto
https://support.apple.com/guide/security/how-imessage-sends-and-receives-messages-sec70e68c949/web
https://support.apple.com/guide/security/how-imessage-sends-and-receives-messages-sec70e68c949/web
https://www.digitalinformationworld.com/2019/01/snapchat-end-to-end-encryption-users-media-messages.html
https://www.digitalinformationworld.com/2019/01/snapchat-end-to-end-encryption-users-media-messages.html
https://signal.org/blog/advanced-ratcheting/
https://signal.org/docs/specifications/x3dh/x3dh.pdf

[49] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record commu-
nication, or, why not to use PGP,” in WPES, 2004.

[50] V. Moscaritolo, G. Belvin, and P. Zimmermann, “Silent Circle
Instant Messaging Protocol Protocol Specification,” 2012. [Online].
Available: https://netzpolitik.org/wp-upload/SCIMP-paper.pdf

[51] M. Marlinspike, “The Double Ratchet Algorithm,” Nov.
2016. [Online]. Available: https://signal.org/docs/specifications/
doubleratchet/doubleratchet.pdf

[52] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky, “Deniable
Encryption,” in CRYPTO, 1997.

[53] J. A. Goguen and J. Meseguer, “Security policies and security
models,” in S&P. IEEE, 1982.

[54] M. Abadi, “Secrecy by typing in security protocols,” Journal of
the ACM (JACM), vol. 46, no. 5, pp. 749–786, 1999.

[55] K. R. O’Neill, M. R. Clarkson, and S. Chong, “Information-flow
security for interactive programs,” in 19th IEEE Computer Security
Foundations Workshop (CSFW’06). IEEE, 2006, pp. 12–pp.

[56] Google Developers, “Encoding | Protocol Buffers |
Google Developers,” May 2022. [Online]. Available:
https://developers.google.com/protocol-buffers/docs/encoding

[57] M. Ahmed-Rengers, D. A. Vasile, D. Hugenroth, A. R. Beresford,
and R. Anderson, “CoverDrop: Blowing the Whistle Through A
News App,” PoPETS, 2022.

[58] F. Piessens, “Security across abstraction layers: old and new
examples,” in 2020 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), 2020, pp. 271–279.

[59] R. A. Kemmerer, “Shared resource matrix methodology: An
approach to identifying storage and timing channels,” ACM
Transactions on Computer Systems (TOCS), vol. 1, no. 3, pp.
256–277, 1983.

[60] A. Askarov, D. Zhang, and A. C. Myers, “Predictive black-
box mitigation of timing channels,” in Proceedings of the
17th ACM Conference on Computer and Communications
Security, ser. CCS ’10. New York, NY, USA: Association for
Computing Machinery, 2010, p. 297–307. [Online]. Available:
https://doi.org/10.1145/1866307.1866341

[61] D. Zhang, A. Askarov, and A. C. Myers, “Predictive mitigation
of timing channels in interactive systems,” in Proceedings of
the 18th ACM Conference on Computer and Communications
Security, ser. CCS ’11. New York, NY, USA: Association for
Computing Machinery, 2011, p. 563–574. [Online]. Available:
https://doi.org/10.1145/2046707.2046772

[62] ——, “Language-based control and mitigation of timing channels,”
SIGPLAN Not., vol. 47, no. 6, p. 99–110, jun 2012. [Online].
Available: https://doi.org/10.1145/2345156.2254078

[63] L. Simon, D. Chisnall, and R. Anderson, “What you get is what
you c: Controlling side effects in mainstream c compilers,” in 2018
IEEE European Symposium on Security and Privacy (EuroS&P),
2018, pp. 1–15.

[64] M. V. Pedersen and A. Askarov, “From trash to treasure: Timing-
sensitive garbage collection,” in 2017 IEEE Symposium on Security
and Privacy (SP), 2017, pp. 693–709.

[65] ——, “Static enforcement of security in runtime systems,” in 2019
IEEE 32nd Computer Security Foundations Symposium (CSF).
IEEE, 2019, pp. 335–33 515.

[66] P. Buiras and A. Russo, “Lazy programs leak secrets,” in Nordic
Conference on Secure IT Systems. Springer, 2013, pp. 116–122.

[67] T. Brennan, N. Rosner, and T. Bultan, “Jit leaks: Inducing timing
side channels through just-in-time compilation,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 1207–
1222.

[68] A. Ferraiuolo, M. Zhao, A. C. Myers, and G. E. Suh, “Hyperflow:
A processor architecture for nonmalleable, timing-safe informa-
tion flow security,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
1583–1600.

[69] M. S. Alvim, K. Chatzikokolakis, A. McIver, C. Morgan,
C. Palamidessi, and G. Smith, The Science of Quantitative
Information Flow, ser. Information Security and Cryptography.
Cham: Springer International Publishing, 2020.

[70] A. Sabelfeld and D. Sands, “Dimensions and principles of declassi-
fication,” in 18th IEEE Computer Security Foundations Workshop
(CSFW’05), Jun. 2005, pp. 255–269.

[71] A. Askarov and A. Sabelfeld, “Gradual release: Unifying declas-
sification, encryption and key release policies,” in 2007 IEEE
Symposium on Security and Privacy (SP ’07), 2007, pp. 207–221.

[72] ——, “Tight enforcement of information-release policies for
dynamic languages,” in 2009 22nd IEEE Computer Security
Foundations Symposium, 2009, pp. 43–59.

[73] D. Chaum, “The dining cryptographers problem: Unconditional
sender and recipient untraceability,” Journal of Cryptology, vol. 1,
no. 1, 1988.

[74] C. C. D. Head, “Anonycaster: Simple, Efficient Anonymous
Group Communication,” 2012. [Online]. Available: https:
//blogs.ubc.ca/computersecurity/files/2012/04/anonycaster.pdf

[75] A. Kwon, D. Lazar, S. Devadas, and B. Ford, “Riffle: An Efficient
Communication System With Strong Anonymity,” PoPETS, 2016.

[76] A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford, “Atom:
Horizontally Scaling Strong Anonymity,” in SOSP, 2017.

[77] R. Cheng, W. Scott, E. Masserova, I. Zhang, V. Goyal, T. Anderson,
A. Krishnamurthy, and B. Parno, “Talek: Private Group Messaging
with Hidden Access Patterns,” in ASAC, 2020.

[78] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt,
“Herd: A Scalable, Traffic Analysis Resistant Anonymity Network
for VoIP Systems,” in SIGCOMM, 2015.

[79] L. Sassaman, B. Cohen, and N. Mathewson, “The pynchon gate: a
secure method of pseudonymous mail retrieval,” in WPES, 2005.

[80] A. Kwon, D. Lu, and S. Devadas, “XRD: Scalable Messaging
System with Cryptographic Privacy,” in NSDI, 2020, pp. 759–776.

[81] S. Eskandarian, H. Corrigan-Gibbs, M. Zaharia, and D. Boneh,
“Express: Lowering the Cost of Metadata-hiding Communication
with Cryptographic Privacy,” in USENIX Security, 2021.

[82] L. Kissner, A. Oprea, M. K. Reiter, D. Song, and K. Yang, “Private
Keyword-Based Push and Pull with Applications to Anonymous
Communication,” in ACNS, 2004.

[83] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis,
“The Loopix Anonymity System,” in USENIX Security, 2017.

[84] J. Warren, “Bitmessage: A Peer-to-Peer Message Authentication
and Delivery System,” 2012. [Online]. Available: https:
//bitmessage.org/bitmessage.pdf

[85] S. Angel and S. Setty, “Unobservable Communication over Fully
Untrusted Infrastructure,” in OSDI, 2016.

[86] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An
Anonymous Messaging System Handling Millions of Users,” in
S&P, 2015.

16

https://netzpolitik.org/wp-upload/SCIMP-paper.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://developers.google.com/protocol-buffers/docs/encoding
https://doi.org/10.1145/1866307.1866341
https://doi.org/10.1145/2046707.2046772
https://doi.org/10.1145/2345156.2254078
https://blogs.ubc.ca/computersecurity/files/2012/04/anonycaster.pdf
https://blogs.ubc.ca/computersecurity/files/2012/04/anonycaster.pdf
https://bitmessage.org/bitmessage.pdf
https://bitmessage.org/bitmessage.pdf

[87] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford, “Proactively
Accountable Anonymous Messaging in Verdict,” in USENIX
Security, 2013.

[88] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zeldovich,
“Stadium: A Distributed Metadata-Private Messaging System,” in
SOSP, 2017.

[89] D. Lazar and N. Zeldovich, “Alpenhorn: Bootstrapping Secure
Communication without Leaking Metadata,” in OSDI, 2016.

[90] D. Lazar, Y. Gilad, and N. Zeldovich, “Yodel: Strong metadata
security for voice calls,” in SOSP, 2019.

[91] L. Barman, M. Kol, D. Lazar, Y. Gilad, and N. Zeldovich, “Groove:
Flexible Metadata-Private Messaging,” in OSDI, 2022.

[92] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: design
of a type III anonymous remailer protocol,” in S&P, 2003.

[93] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig,
“HORNET: High-speed Onion Routing at the Network Layer,” in
CCS, 2015.

[94] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router,” Defense Technical Information Center
(DTIC), Technical report, 2004.

[95] A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov,
“Cirripede: Circumvention infrastructure using router redirection
with plausible deniability,” in CCS, 2011.

[96] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman, “Telex:
Anticensorship in the Network Infrastructure,” in USENIX Security,
2011.

[97] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr, and N. Borisov,
“CensorSpoofer: asymmetric communication using IP spoofing for
censorship-resistant web browsing,” in CCS, 2012.

[98] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and I. Goldberg,
“SkypeMorph: protocol obfuscation for Tor bridges,” in CCS, 2012.

[99] M. B. Rosen, J. Parker, and A. J. Malozemoff, “Balboa: Bobbing
and Weaving around Network Censorship,” in USENIX Security,
2021.

[100] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity
Trilemma: Strong Anonymity, Low Bandwidth Overhead, Low
Latency - Choose Two,” in S&P, 2018.

[101] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating
Noise to Sensitivity in Private Data Analysis,” in Theory of
Cryptography. Springer Berlin Heidelberg, 2006, no. 3876, pp.
265–284.

[102] J. K. Howes IV, M. Georgiou, A. J. Malozemoff, and T. Shrimpton,
“Security Foundations for Application-Based Covert Communica-
tion Channels,” in S&P, 2022.

[103] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs,
“Ratcheted encryption and key exchange: The security of messag-
ing,” in CRYPTO, 2017.

[104] J. Jaeger and I. Stepanovs, “Optimal channel security against fine-
grained state compromise: The safety of messaging,” in CRYPTO,
2018.

[105] J. Alwen, S. Coretti, and Y. Dodis, “The double ratchet: security
notions, proofs, and modularization for the signal protocol,” in
EUROCRYPT, 2019.

[106] O. Blazy, A. Bossuat, X. Bultel, P.-A. Fouque, C. Onete, and
E. Pagnin, “Said: reshaping signal into an identity-based asyn-
chronous messaging protocol with authenticated ratcheting,” in
EuroS&P, 2019.

[107] O. Blazy, P.-A. Fouque, T. Jacques, P. Lafourcade, C. Onete, and
L. Robert, “Marshal: Messaging with asynchronous ratchets and
signatures for faster healing,” in SAC, 2022.

[108] N. Unger and I. Goldberg, “Improved strongly deniable authenti-
cated key exchanges for secure messaging,” PoPETS, vol. 2018,
no. 1, pp. 21–66, 2018.

[109] N. Vatandas, R. Gennaro, B. Ithurburn, and H. Krawczyk, “On the
cryptographic deniability of the signal protocol,” in ACNS, 2020.

[110] J. Brendel, R. Fiedler, F. Günther, C. Janson, and D. Stebila,
“Post-quantum asynchronous deniable key exchange and the signal
handshake,” in PKC, 2022.

[111] A. Askarov, S. Chong, and H. Mantel, “Hybrid monitors for
concurrent noninterference,” in 2015 IEEE 28th Computer Security
Foundations Symposium, 2015, pp. 137–151.

[112] D. Clark and S. Hunt, “Non-interference for deterministic interac-
tive programs,” in International Workshop on Formal Aspects in
Security and Trust. Springer, 2008, pp. 50–66.

17

Net-Global
U = u1 . . . uj . . . un uj

τ,α
↣ uj

′ U ′ = u1 . . . uj
′ . . . un S ⇒

α
S ′

⟨S,U , τ⟩ −→ ⟨S ′,U ′, τ ·α⟩

Figure 8: Network transitions

1. Full formal model

To formally model keys generated in the protocol, we introduce the notion of formal randomness that captures two
kinds of key generation we have in the protocol. Local key generation takes place on the user nodes when they start
new sessions or refill keys. Seeded key generation takes place on the server, and later on the client when their seed
counters are updated. We define formal randomness via tags defined as follows.

r ::= $local(n, g) | $seeded(s, c)

We denote the set of formal randomness tags as FR. Keys are represented as values of form k⟨r⟩, effectively propagating
the randomness tag associated with their creation.

Definition 7 (Regular message).

γ ::= msg(n, ρ)

Definition 8 (User state). A user state is a tuple ⟨n,L,M,R, s, c, g⟩, where n is the identity of the user, L and M are
sets containing the user’s own keys or keys of other users paired with a state of the form (k, fresh) or (k, used), R is
the abstraction of a ratchets mapped by receiving users to (w, {k1, k2}, I) containing the starting index assigned to the
user, the initiating keys, and the observed message indices I , s is a seed for the deterministic random number generator,
c is a formal randomness counter for the server-side key generation, and g is the formal randomness counter for the
client-side key generation.

Definition 9 (Server state). A server state is represented by a tuple ⟨H, rq , D⟩ where H represents the state of an
arbitrary host protocol, rq is a list of outgoing regular messages, and D represents the deniable state. The deniable
state is a mapping of a user to a tuple of the form (s, c, K, B, dq), where s represents a seed for a deterministic
random number generator, c a counter, K a set of keys, B a set of blocked users, and dq a list of DenIM payloads.

1.1. Network configuration. A network configuration is represented by a tuple containing server state, user states and a
network trace: ⟨S,U , τ⟩.

1.2. Network and state transitions. Figure 8 Figure 11 Figure 12 Figure 13 Figure 14 Figure 10 Figure 9

18

User-Denim-Kresp
ξ = kresp((n1, k) for n) M ′ = M [n1 7→ (k, fresh)]

⟨n,L,M,R, s, c, g⟩99K
ξ

⟨n,L,M ′, R, s, c, g⟩

User-Denim-Fwd-New-Session
ξ = fwd(n1 → n, tok) n1 /∈ dom(R) tok = {(n1, k1), (n, k), (0, y)}

L = L′ ⊎ {(k, fresh)} L′′ = L′ ∪ {(k, used)} R′ = R[n1 7→ (1, {k, k1}, {(0, y)})]

⟨n,L,M,R, s, c, g⟩99K
ξ

⟨n,L′′,M,R′, s, c, g⟩

User-Denim-Fwd-Initialized
ξ = fwd(n1 → n, tok) n1 ∈ dom(R)

tok = {(n1, k1), (n, k), (x, y)} R(n1) = (w, {k, k1}, I) R′ = R[n1 7→ (w, {k, k1}, I ∪ {(x, y)})]

⟨n,L,M,R, s, c, g⟩99K
ξ

⟨n,L,M,R′, s, c, g⟩

Figure 9: Client downstream state transitions

User-Denim-Refill
k = k⟨$local(n, g)⟩ ξ = refill(n, k) L′ = L ∪ {(k, fresh)}

⟨n,L,M,R, s, c, g⟩99K
ξ
⟨n,L′,M,R, s, c, g + 1⟩

User-Denim-Kreq
ξ = kreq(n1 for n)

⟨n,L,M,R, s, c, g⟩99K
ξ
⟨n,L,M,R, s, c, g⟩

User-Denim-Block
ξ = block(n by n1)

⟨n,L,M,R, s, c, g⟩99K
ξ
⟨n,L,M,R, s, c, g⟩

User-Denim-Send-New-Session
{n, n1} /∈ dom(R)

k = k⟨$local(n, g)⟩ L′ = L ∪ {(k, used)} M(n1) = (k1, fresh) M ′ = M [n1 7→ (k1, used)]
tok = {(n, k), (n1, k1), (0, 0)} ξ = send(n → n1, tok) R′ = R[n1 7→ (0, {k, k1}, {(0, 0)})]

⟨n,L,M,R, s, c, g⟩99K
ξ
⟨n,L′,M ′, R′, s, c, g + 1⟩

User-Denim-Send-Initialized
n1 ∈ dom(R) (x, y) = next(R,n1) (k, used) ∈ L tok = {(n, k), (n1, k1), (x, y)}

ξ = send(n → n1, tok) R(n1) = (w, {k, k1}, I) R′ = R[n 7→ (w, {k, k1}, I ∪ {(x, y)})]
⟨n,L,M,R, s, c, g⟩99K

ξ
⟨n,L,M,R′, s, c, g⟩

next(R,n) =
x, y = latest(R,n)
w = R(n).w
ifx%2 = w

then (x, y + 1)
else (x+ 1, 0)

Figure 10: Client upstream state transitions, and auxiliary function next, where latest returns the latest index in the
ratchet

19

Aux-Upstream-User-Event
σ = ⟨n,L,M,R, s, c, g⟩ σ99K

ξ
σ′ α = denimup(n, ρ, ξ) ω(⌊τ⌋n) = kind(ξ)

ω;σ
τ,α
↣ ω;σ′

Aux-Upstream-User-•
σ = ⟨n,L,M,R, s, c, g⟩ α = denimup(n, ρ, •) ω(⌊τ⌋n) = •

ω;σ
τ,α
↣ ω;σ

Aux-Downstream-User-Event
σ = ⟨n,L,M,R, s, c, g⟩ α = denimdn(n, ρ, ξ, c′) L′ = L ∪ seededfreshkeys(s, c, c′)

⟨n,L′,M,R, s, c′, g⟩99K
ξ

⟨n,L′,M ′, R′, s, c′, g⟩ σ′ = ⟨n,L′,M ′, R′, s, c′, g⟩

ω;σ
τ,α
↣ ω;σ′

Aux-Downstream-User-Dummy-Or-Malformed
σ = ⟨n,L,M,R, s, c, g⟩

α = denimdn(n, ρ, ξ, c′) L′ = L ∪ seededfreshkeys(s, c, c′) σ′ = ⟨n,L′,M,R, s, c′, g⟩ σ′ ̸99K
ξ

ω;σ
τ,α
↣ ω;σ′

seededfreshkeys(s, c, c′) =
⋃

c≤j<c′

(k⟨$seeded(s, j)⟩, fresh)

Figure 11: Auxiliary user transitions

Aux-Upstream-Server-Event

α = denimup(n, ρ, ξ) ⟨H, rq⟩ (n,ρ)−−−→ ⟨H ′, rq ′⟩ D⇝
ξ

D′

⟨H, rq , D⟩
α

⇒ ⟨H ′, rq ′, D′⟩

Aux-Upstream-Server-Dummy-Or-Malformed

α = denimup(n, ρ, ξ) ⟨H, rq⟩ (n,ρ)−−−→ ⟨H ′, rq ′⟩ D ̸⇝
ξ

⟨H, rq , D⟩
α

⇒ ⟨H ′, rq ′, D⟩

Aux-Downstream-Server-Event
D(n) = (s, c,K,B, ξ ·dq) α = denimdn(n, ρ, ξ, c) D′ = D[n1 7→ (s, c,K,B, dq)]

⟨H, (n1, ρ)·rq , D⟩
α

⇒ ⟨H, rq , D′⟩

Aux-Downstream-Server-•
D(n) = (s, c,K,B, []) α = denimdn(n1, ρ, •, c)

⟨H, (n, ρ)·rq , D⟩
α

⇒ ⟨H, rq , D⟩

Figure 12: Auxiliary server transitions

20

Server-Host-Action
H ′, γ′ = hostresponse(H, γ)

⟨H, rq⟩ γ−→ ⟨H ′, rq ·γ′⟩

Server-Host-No-Action
H ′,⊥ = hostresponse(H, γ)

⟨H, rq⟩ γ−→ ⟨H ′, rq⟩

Figure 13: Server state transitions processing host protocol messages

Server-Denim-Refill
ξ = refill(n, k) D(n) = (s, c,K,B, dq) K ′ = K ∪ k D′ = D[n 7→ (s, c,K ′, B, dq)]

D⇝
ξ

D′

Server-Denim-Kreq
ξ = kreq(n1 for n2) D(n1) = (s1, c1,K1, B1, dq1) D(n2) = (s2, c2,K2, B2, dq2) K1 = K ′

1 ⊎ {k1}
ξ′ = kresp((n1, k1) for n2) D′ = D[n1 7→ (s1, c1,K

′
1, B1, dq1), n2 7→ (s2, c2,K2, B2, dq2 ·ξ′)]

D⇝
ξ

D′

Server-Denim-Kreq-Out-of-Keys
ξ = kreq(n1 for n2)

D(n1) = (s1, c1,∅, B1, dq1) D(n2) = (s2, c2,K2, B2, dq2) k1 = k⟨$seeded(s1, c1)⟩
ξ′ = kresp((n1, k1) for n1) D′ = D[n1 7→ (s1, c1 + 1,∅, B1, dq1), n2 7→ (s2, c2,K2, B2, dq2 ·ξ′)]

D⇝
ξ

D′

Server-Denim-Send
ξ = send(n1 → n2, tok) D(n2) = (s, c,K,B, dq)

n1 /∈ dom(B) ξ′ = fwd(n1 → n2, tok) D′ = D[n2 7→ (s, c,K,B, dq ·ξ′)]

D⇝
ξ

D′

Server-Denim-Send-Blocked-Or-Unregistered
ξ = send(n1 → n2, tok) D(n2) = (s, c,K,B, dq) (n1 ∈ dom(B) ∨ n2 /∈ dom(D))

D⇝
ξ

D

Server-Denim-Block
ξ = block(n2 by n1) D(n1) = (s, c,K,B, dq) B′ = B ∪ {n2} D′ = D[n1 7→ (s, c,K,B′, dq)]

D⇝
ξ

D′

Figure 14: Server state transitions caused by processing of DenIM payloads

21

block(n by n)
ϕ∼ block(n by n) kreq(n for n)

ϕ∼ kreq(n for n) • ϕ∼ •

tok1 = {(n1, k⟨r1⟩), (n2, k⟨r2⟩), (x, y)} tok2 = {(n1, k⟨ϕ(r1)⟩), (n2, k⟨ϕ(r2)⟩), (x, y)}

send(n1 → n2, tok1)
ϕ∼ send(n1 → n2, tok2)

tok1 = {(n1, k⟨r1⟩), (n2, k⟨r2⟩), (x, y)} tok2 = {(n1, k⟨ϕ(r1)⟩), (n2, k⟨ϕ(r2)⟩), (x, y)}

fwd(n1 → n2, tok1)
ϕ∼ fwd(n1 → n2, tok2)

refill(n, k⟨r⟩) ϕ∼ refill(n, k⟨ϕ(r)⟩) kresp((n1, k⟨r⟩) for n2)
ϕ∼ kresp((n1, k⟨ϕ(r)⟩) for n2)

Figure 15: Event indistinguishability

2. Indistinguishability

Our low equivalence relations are parameterized by permutation functions on formal randomness: ϕ : FR → FR.
The idea is that when comparing configurations from different runs, we replace randomness tags r with ϕ(r). As
such, indistinguishability relations use up to two parameters: the set of adversary nodes N (not relevant for event
indistinguishability below) and the permutation function ϕ. We build up indistinguishability bottom-up, starting from
events and traces, and leading to system configurations.

Definition 10 (Event indistinguishability). We define event indistinguishability structurally as per Figure 15.

Definition 11 (Message indistinguishability). Given two messages α1 and α2, define message indistinguishability w.r.t. a
set of adversarial nodes N, and permutation ϕ, written α1

ϕ∼N α2, based on the structure of the messages, as follows:

n ∈ N =⇒ ξ1
ϕ∼ ξ2

denimup(n, ρ, ξ2)
ϕ∼N denimup(n, ρ, ξ1)

n ∈ N =⇒ ξ1
ϕ∼ ξ2 ∧ c1 = c2

denimdn(n, ρ, ξ1, c1)
ϕ∼N denimdn(n, ρ, ξ1, c1)

Definition 12 (Trace indistinguishability). Consider two traces τ1, τ2 of length n, each composed of events α1i and α2i

respectively. Consider a set of adversarial nodes N. Say that two traces are indistinguishable to the set of attacker
nodes N, written τ1 ∼N τ2, if for all i = 1..n, it holds that α1i

ϕ∼N α2i.

We use notation τ1 ≃N
init τ2 if τ1

ϕinit∼ N τ2 holds for the empty bijection ϕinit . We write τ1 ≃N τ2, if there exists a
bijection ϕ such that τ1

ϕ∼N τ2.

Definition 13 (User state indistinguishability).

σ1 = ⟨n,L1,M2, R1, s, c, g⟩ σ2 = ⟨n,L2,M2, R2, s, c, g⟩ n ∈ N (k⟨r⟩, z) ∈ L1 ⇔ (k⟨ϕ(r)⟩, z) ∈ L2

M(n′) = (k⟨r⟩, z) ⇔ M(n′) = (k⟨ϕ(r)⟩, z) R(n′) = (w, {k⟨r⟩, k⟨r1⟩}, I) ⇔ R(n′) = (w, {k⟨ϕ(r)⟩, k⟨ϕ(r1)⟩}, I)

ω;σ1
ϕ∼N ω;σ2

σ1 = ⟨n,L1,M1, R1, s1, c1, g1⟩ σ2 = ⟨n,L2,M2, R2, s2, c2, g2⟩ n /∈ N

ω1;σ1
ϕ∼N ω2;σ2

Definition 14 (Server user configuration indistinguishability).

k⟨r⟩ ∈ K1 ⇔ k⟨ϕ(r)⟩ ∈ K2 dq1 = ξ11 . . . ξ
1
j dq2 = ξ21 . . . ξ

2
j ξ1i

ϕ∼ ξ2i , i = 1..j

(s, c,K1, B, dq1)
ϕ∼ (s, c,K2, B, dq2)

Definition 15 (System configuration indistinguishability). Given two system configurations ⟨S1,U1, τ1⟩, ⟨S2,U2, τ2⟩,
we say that two configurations are indistinguishable written ⟨S1,U1, τ1⟩ ∼N ⟨S2,U2, τ2⟩, if they are indistinguishable
component-wise. Technically,

22

S1 = ⟨H, rq , D1⟩ S2 = ⟨H, rq , D2⟩ ∀n ∈ N . D1(n)
ϕ∼ D2(n)

U1 = σ1
1 . . . σ

1
j . . . σ

1
k U2 = σ2

1 . . . σ
2
j . . . σ

2
k σ1

j
ϕ∼N σ2

j , j = 1..k τ1
ϕ∼N τ2

⟨S1,U1, τ1⟩
ϕ∼N ⟨S2,U2, τ2⟩

3. Proof of Theorem 1

Definition 16 (Strategy determinism w.r.t. formal randomness). A strategy is deterministic w.r.t formal randomness, if
for any two traces τ1 and τ2, and any N, ϕ such that τ1

ϕ∼N τ2, it holds that ω(τ1) = ω(τ2).

Definition 17 (Valid destinations). Given a signal configuration σ = ⟨n,L,M,R, s, c, g⟩, define valid destinations for
this configuration, denoted as validdests(σ), as validdests(σ) = dom(M) ∪ dom(R).

Definition 18 (Tight bijections). Given a pair of configurations ⟨S,U , τ1⟩ and ⟨R,W, τ2⟩, and a set of adversarial
nodes N, say that a bijection ϕ is tight w.r.t. these configurations and N, if dom(ϕ) is restricted to formal randomness
tags that appear in the adversarial components of S and U , and img(ϕ) is restricted to formal randomness tags that
appear in the the adversarial components of R and W .

Lemma 1 (Unwinding). Suppose a set of adversarial nodes N and two configurations ⟨S,U , τ1⟩ and ⟨R,W, τ2⟩, such
that

• there is a tight bijection ϕ such that ⟨S,U , τ1⟩
ϕ∼N ⟨R,W, τ2⟩, and

• all user strategies are valid, i.e., valid(U | N) and valid(W | N)
• traces τ1 (resp. τ2) are consistent with valid destinations for user signal configurations in U (resp. W), i.e., for

any pair signal state σ in U (resp. W) of node n, if for any valid strategy ω it holds that ω(⌊τ⌋n) = SEND ndest ,
then ndest ∈ validdests(σ)

• there is a message α that is valid w.r.t. N such that ⟨S,U , τ1⟩ −→ ⟨S ′,U ′, τ1 ·α⟩

Then there is a message β, and a tight bijection ϕ′ that extends ϕ, such that ⟨R,W, τ2⟩ −→ ⟨R′,W ′, τ2 ·β⟩ and

⟨S ′,U ′, τ1 ·α⟩
ϕ′

∼N ⟨R′,W ′, τ2 ·β⟩ and extended traces τ1 ·α (resp. τ2 ·β) are consistent with valid destinations in the
updated configurations U (resp. W).

Proof. Let S = ⟨H, rq , D⟩ and R = ⟨H, rq , F ⟩. The only way to produce the message α at the network level is by

rule (Net-Global). By inversion of the rule, there is a user state uj for which it holds that uj

τ1,α
↣ u′

j and S
α

⇒ S ′. We

proceed by case analysis on α.

Case α = denimup(n, ρ, ξ1) On the server side, the two possible transitions are (Aux-Upstream-Server-Event) or (Aux-
Upstream-Server-Dummy-Or-Malformed). In either case, the host server is updated through the host response
function H ′, γ = hostresponse(H, (n, ρ)), where γ is a potential host response, and the reply queue is potentially
extended depending on γ, per rules (Server-Host-Action) and (Server-Host-No-Action). We proceed by distinguishing
whether the sending node is adversarial or not.
Sending node is not part of N In this case, the adversary can observe only the host protocol aspects of the

message.

We consider two sub-cases, depending on whether there is a transition D⇝
ξ1
D′.

Case D⇝
ξ1
D′ Because α is produced by a valid non-adversarial strategy, it does not contain messages that modify

the parts of the server state for nodes in N.

Case D ̸⇝
ξ1

. We hit this case, if ξ2 is dummy •, or it is a malformed event and no premises of Figure 14 are
satisfied. The state of the nodes in N is not affected.

Suppose now that ω2 is the strategy of user n in configuration W . Let ω2(τ2) = κ2 be the decision of the strategy
at this point. Because the strategy is valid it must be the case that we can construct a matching DenIM event ξ2
such that kind(ξ2) = κ2.

Let β = denimup(n, ρ, ξ2). Similar to the above reasoning about α, we can argue that the state of the adversarial

nodes on the server is not affected by this message, regardless of whether the server uses the rules where F⇝
ξ2
F ′

or F ̸⇝
ξ2

.

Because α is an upstream message, it does not change the set of valid destination for user n. For the same reason,
if a valid strategy chooses a destination based on the trace τ1·α, the same destination is allowed to be chosen for
the trace τ1. This means that the extended trace is consistent with respect to the updated signal configuration for
user n (all other users are unchanged). Similar argument holds for β.

23

Finally, because no attacker-visible keys are generated by these messages, we keep the bijection, and let ϕ′ = ϕ.

Putting everything together we have that both the server and the user states are extended in a way that is not
distinguishable to the adversary; and that the updated traces are consistent with valid destinations, which concludes
this case of the proof.

Sending node is part of N We consider two sub-cases, depending on whether there is a transition D⇝
ξ1
D′.

Case D ̸⇝
ξ1

. We hit this case, if ξ2 is dummy •, or it is a malformed event and no premises of Figure 14 are
satisfied. The state of the nodes in N is not affected.

Case D⇝
ξ1
D′ This message modifies the server state corresponding to the adversary. However, because this is an

adversarial node, it means that configurations U and W agree on both the signal state and the strategy ω
used by this node. We have that κ1 = ω(⌊τ1⌋n) and κ2 = ω(⌊τ2⌋n). Because the traces are indistinguishable
and the strategy is valid, κ1 = κ2. We proceed by considering the different non-dummy possibilities for κ1.
Case SEND n′ If this message initiates a new session, cf. rule (User-Denim-Send-New-Session), a fresh

key is generated. Because the two configurations agree on the key generation counters, the keys generated
in both runs can be matched in the extension of the bijection. If no new keys are generated at this step,
which means that sending happens along an established session cf (User-Denim-Send-Initialized), then
the bijection remains unchanged.

Case REFILL Similar to the above, we can extend the bijection in both runs.
Case KREQ n′ There are two ways the server can process this message

1) There are available keys for n′ on the server, cf. rule (Server-Denim-Kreq), and the server picks one of
the keys from the keystore of n′. We know that these keys are not in the domain/image of the bijection,
because the bijection is tight.

2) There are no available keys for n′ on the server, cf. rule (Server-Denim-Kreq-Out-of-Keys), and the
server generates a seeded key. These keys are also not in the domain/image of the bijection.

Let k⟨r1⟩ be the key obtained in the first run, and k⟨r2⟩ be the key generated in the second run, and
we know that r1 and r1 are not in the bijection. We can therefore extend ϕ by mapping r1 to r2. This
extension preserves tightness property of the bijection, because by moving them to the deniable output
queue on the server, they are now part of the adversarial state.

Case BLOCK n′ This case does not affect the generated keys; and therefore can be matched exactly in both
runs, without extending the bijection.

To conclude this case, we observe that when the adversary state on the server is extended, it happens in a
way that can be matched in the second run, including matching new keys, which concludes the case.

Case α = denimdn(n, ρ, ξ1, c1) We consider two cases.
The receiving node is not part of N This does not change any parts of the adversary state, and we are done

immediately.
The receiving node is part of N The parts of the adversarial state are changed in the way that is matched across

both runs, but no new keys are generated, and we therefore are done immediately as well.

Using the Lemma 1, the proof of Theorem 1 is immediate by induction on the trace τ1.

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time. Notice that
since q = 0, no deniable traffic is piggybacked to
the server.

Figure 16: Server statistics collected with setting A1.

24

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time.

Figure 17: Server statistics collected with setting A2.

(a) CPU load over time.
(b) Regular messages processed over
time.. (c) Deniable buffer length over time

Figure 18: Server statistics collected with setting A3.

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time.

Figure 19: Server statistics collected with setting A4.

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time.

Figure 20: Server statistics collected with setting A5.

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time.

Figure 21: Server statistics collected with setting A6.

25

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time.

Figure 22: Server statistics collected with setting A7.

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time.

Figure 23: Server statistics collected with setting A8.

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time.

Figure 24: Server statistics collected with setting A9.

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time.

Figure 25: Server statistics collected with setting A10.

(a) CPU load over time. (b) Regular messages processed over time. (c) Deniable buffer length over time.

Figure 26: Server statistics collected with setting A11.

26

(a) Regular message latency over time. (b) Deniable messages latency over time.

Figure 27: Client-to-client message latency measure from q = 0 to q = 1.2 with step 0.12.

27

	Introduction
	Background
	Instant messaging
	The Signal protocol
	Keys used in Signal
	Overview of the Signal Protocol

	System design
	Threat model
	Design goals
	Security and privacy goals
	Performance goals

	Trust assumptions

	DenIM on Signal
	Protocol details
	Deniable padding
	Deniable buffers
	Changes to Signal
	Supported deniable actions

	Formal analysis
	Cryptographic guarantees
	Protecting deniable behavior
	Communication model
	System state
	System transitions

	Empirical evaluation
	Implementation
	Network messages
	Randomized key labels

	Experimental setup and design
	Results

	Limitations and future work
	Related work
	Conclusion
	References
	
	Full formal model
	Network configuration
	Network and state transitions

	Indistinguishability
	Proof of thm:denim:privacy

