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Abstract. Reasoning about information flow in a concurrent setting is
notoriously difficult due in part to timing channels that may leak sensi-
tive information. In this paper, we present a compositional and flexible
type-and-effect system that guarantees non-interference by disallowing
potentially insecure races that can be exploited through internal timing
attacks. In contrast to many previous approaches, which disallow all
races on public variables, we use an explicit scheduler model to give a
more permissive security definition and type system, which allows benign
races on public variables. To achieve compositionality, we use the idea of
resources from separation logic, both to locally specify and reason about
whether accesses may be racy and to bound the security level of data
that may be learned through scheduling.

1 Introduction

Non-interference [15] is an important security property. Informally, a program
satisfies non-interference if its publicly observable (low) outputs are independent of
its private (high) inputs. In spite of the vast body of research on non-interference,
reasoning about information flow control and enforcing non-interference for
imperative concurrent programs remains a difficult problem. One of the main
problems is prevention of information flows that originate from interaction of the
scheduler with individual threads, also known as internal timing leaks.

Example 1. Consider the following program [44]3.

fork(delay(50); l := 1); // Thread 1

fork(if h then skip else delay(100); l := 2); // Thread 2

In this program, h is a high variable and l is intended to be a low variable. But
the order of the two assignments to l depends on the branch that is picked by
Thread 2. As a result, under many schedulers, the resulting value of l = 1 reveals
the value of h being true to a low observer.

3 delay(n) is used as an abbreviation for skip; . . . ; skip n times, i.e., it models a compu-
tation that takes n reduction steps.



It may appear that the problem in the above example is that Thread 2 races
to the low assignment after branching on a secret. The situation is actually worse.
Without explicit assumptions on the scheduling of threads, a mere presence of a
high branching in the pool of concurrently running threads is problematic.

Example 2. Consider the following program, which forks three threads.

fork(delay(50); l := 1); // Thread 1

fork(if h then skip else delay(100)); // Thread 2

fork(l := 2) // Thread 3

In this program, every individual thread is secure, in the sense that it does not
leak information about high variables to a low observer. Additionally, pairwise
parallel composition of any of the threads is secure, too, including a benign race
fork(l := 1); fork(l := 2). Even if we assume that the attacker fully controls the
scheduler, the final value of l will be determined only by the scheduler of his
choice. However, for the parallel execution of all the three threads, if the attacker
can influence the scheduler, it can leak the secret value of h through public l.

In this paper, we present a compositional and flexible type-and-effect system
that supports compositional reasoning about information flow in concurrent
programs, with minimal assumptions on the scheduler. Our type system is based
on ideas from separation logic; in particular, we track ownership of variables. An
assignment to an exclusively-owned low variable is allowed as long as it does not
create a thread-local information flow violation, regardless of the parallel context.
Additionally, we introduce a notion of a labeled scheduler resource, which allows
us to distinguish and accept benign races as secure.4 A racy low assignment
is allowed as long as the thread’s scheduler resource is low; the latter, in its
turn, prevents parallel composition of the assignment with high threads, avoiding
potential scheduler leaks. This flexibility allows our type system to accept pairwise
parallel compositions of threads from Example 2, while rightfully rejecting the
composition of all three threads.

Following the idea of ownership transfer from separation logic, our type system
allows static transfer of resource ownership along synchronization primitives. This
enables typing of programs that use synchronization primitives to avoid races, as
illustrated in the following example.

Example 3. Consider the following modification of Example 2.

fork(delay(50); l := 1; send(c)); // Thread 1

fork(if h then skip else delay(100)); // Thread 2

recv(c); // recover exclusive ownership of variable l

fork(l := 2) // Thread 3

4 One could argue that programs should not have any races on assignments at all; but
in general we will want to allow races on some shareable resources (e.g., I/O) and
that is why we study a setup in which we do try to accommodate benign races to
assignments.



In this program, Thread 1 sends a message on channel c. Since the main program
synchronizes on the c channel (by receiving on channel c), Thread 3 is not
forked until after the assignment l := 1 in Thread 1 has happened. Hence, the
synchronization ensures that there is no race on l and the program is therefore
secure, even in the presence of the high branching in the concurrent Thread 2.

Note that unconstrained transfer of resources creates an additional covert
channel that needs to be controlled. Section 3 describes how our type system
prevents implicit flows via resource transfer.

One might expect that synchronization can also be used to allow races after
high threads are removed from the scheduler. That is, however, problematic, as
illustrated by the following example.

Example 4. Consider the following program.

fork(if h then s1 else s2; send(c)); // Thread 1

recv(c);

fork(l := 1); // Thread 2

fork(l := 2) // Thread 3

The program forks off three threads and uses send(c) and recv(c) on a channel c
to postpone forking of Thread 2 and 3 until after Thread 1 has finished. Here it is
possible for the high thread (Thread 1) to taint the scheduler and thus affect its
choice of scheduling between Threads 2 and 3 after Thread 1 has finished. This
could, e.g., happen if we have an adaptive scheduler and s1 and s2 have different
workloads. Then the scheduler will be adapted differently depending on whether
h is true or false and therefore the final value of l may reveal the value of h.

To remedy this issue, we introduce a special rescheduling operation that resets
the scheduler state, effectively removing all possible taint from past high threads.

Example 5. Consider the following variation of Example 4:

fork(if h then s1 else s2; send(c)); // Thread 1

recv(c);

reschedule; // reset the scheduler state

fork(l := 1); // Thread 2

fork(l := 2) // Thread 3

The reschedule operation resets the scheduler state and therefore no information
about the high variable h is leaked from the high thread and this program is
thus secure.

The above example illustrates that reschedule allows us to remove scheduler taint
from high threads and thus accept programs with benign races as secure after
high threads have finished executing.



Contributions This paper proposes a new compositional model for enforcing
information flow security in imperative concurrent programs. The key components
of the model are:

– A fine-grained compositional5 type-and-effect system that prevents internal
timing leaks by tracking when races may occur and whether the scheduler
state could be tainted with confidential information. The type-and-effect
system allows us to verify programs with benign races as secure.

– A novel programming construct for resetting the scheduler state.
– A proof technique for termination-insensitive notion of security under possible

low nondeterminism.

We emphasize that our model is independent of the choice of scheduler; the only
restriction on the runtime system is that it should implement the reschedule oper-
ation for resetting the scheduler state. This is a very mild restriction. Compared
to other earlier work that also allows for scheduler independence and benign low
races, our type-and-effect system is, to the best of our knowledge, much more
expressive in the sense that it allows to verify more programs as secure.

The choice of termination-insensitive security condition as the target condi-
tion is deliberate for we only consider batch-style executions. We believe that
our results can be extended to progress-insensitive security [2] using standard
techniques. Despite that termination-insensitive security conditions leak arbitrary
information [3], these leaks occur only via unary encoding of the secret in the trace
and are relatively slow, especially when the secret space is large, compared to fast
internal timing channels that we aim to close. We do not consider termination
(or progress)-sensitivity because it is generally difficult to close all possible termi-
nation and crashing channels that may be exploited by the adversary, including
resource exhaustion, without appealing to system-level mechanisms that also
mitigate external timing channels. We discuss this more in detail in Section 5.
Finally, note that in this paper we only address leaks through interactions with
the scheduler (i.e., the internal timing leaks). Preventing external leaks is an
active area of research and is out of scope of the paper.

Outline The remainder of this paper is organized as follows. In Section 2, we
formally define the concurrent language and our security model. In Section 3,
we present the type system for establishing security of concurrent programs. For
reasons of space, an overview of the soundness proof and the detailed proof can
be found in the accompanying appendix. We discuss related work in Section 5.
Finally, in Section 6, we conclude and discuss future work.

2 Language and Security Model

We begin by formally defining the syntax and operational semantics of a core
concurrent imperative language. The syntax is defined by the grammar below and

5 We use a standard notion of compositionality for separation-style type systems, see
comments to Theorem 1.



includes the usual imperative constructs, loops, conditionals and fork. Thread
synchronization is achieved using channels which support a non-blocking send
primitive and a blocking receive. In addition, the syntax also includes our novel
reschedule construct for resetting the scheduler.

v ∈ Val ::= () | n | tt | ff
e ∈ Exp ::= x | v | e1 = e2 | e1 + e2
s ∈ Stm ::= skip | s1; s2 | x := e | if e then s1 else s2 | while e do s

| fork(s) | send(ch) | recv(ch) | reschedule
K ∈ ECtx ::= • | K ; s

Here x and ch range over finite and disjoint sets of variable and channel identifiers,
respectively. The sets are denoted by Var and Chan, respectively.

The operational semantics is defined as a small-step reduction relation over
configurations of the form sf , S, T,M, ρ consisting of a scheduling function sf , a
scheduler state S, a thread pool T , a message pool M and a heap ρ. A scheduling
function sf takes a scheduler state, a thread pool, a message pool and a heap as
arguments and returns a new scheduler state and a thread identifier of the next
thread to be scheduled [33, 30]. A thread pool T is a partial function from thread
identifiers to sequences of statements, a message pool is a function from channel
names to natural numbers, each representing a number of signals available on
the respective channel, and a heap is a function from variables to values. We
model a thread as a stack of statements, pushing whenever we encounter a branch
and popping upon termination of branches. The semantic domains are defined
formally in Figure 1.

T ∈ TPool
def
= TId

fin
⇀ seq Stm sf ∈ Schd

def
= S × TPool ×MPool×Heap → S × TId

M ∈ MPool
def
= Chan → N Ψ ∈ ReSchd

def
= Schd ×MPool×Heap → Schd × S × TId

ρ ∈ Heap
def
= Var → Val

Fig. 1. Semantic domains.

T,M, ρ _t,a T ′,M ′, ρ′ sf (S, T,M, ρ) = (S′, t) a 6= rs(·)
sf , S, T,M, ρ −→Ψ sf , S′, T ′,M ′, ρ′

T,M, ρ _t,a T ′,M ′, ρ′ Ψ(sf ,M, ρ) = (sf ′, S′, t ′) a = rs(t ′)

sf , S, T,M, ρ −→Ψ sf ′, S′, T ′,M ′, ρ′

Fig. 2. Global reduction relation.

The reduction relation is split into a local reduction relation that reduces a
given thread and a global reduction relation that picks the next thread to be
scheduled. The global reduction relation is defined in terms of the local reduction
relation, written T,M, ρ _t,a T ′,M ′, ρ′, which reduces the thread t in thread
pool T , emitting action a during the reduction. The global reduction relation
only distinguishes between reschedule actions and non-reschedule actions. To
reduce reschedule actions, the global reduction relation refers to a rescheduling



function Ψ , which computes the next scheduler and scheduler state. The global
reduction relation, written sf , S, T,M, ρ −→Ψ sf ′, S′, T ′,M ′, ρ′, is indexed by a
rescheduling function Ψ , which takes as argument the current scheduling function,
message pool and heap and returns a new scheduling function and scheduler
state. The global reduction relation is defined formally in Figure 2.

The local reduction relation is defined over configurations consisting of a
thread pool, a message pool and a heap (Figure 3). It is defined in terms of a
statement reduction relation, s, h →a s

′ that reduces a statement s to s′ and
emits an action a describing the behavior of the statement on the state. We
use evaluation contexts, K, to refer to the primitive statement that appears
in a reducible position inside a larger statement. We use K[s] to denote the

T (t) = K[s] :: stk s, ρ→a s ′

T,M, ρ _t,a [[a]]A(T [t 7→ K[s ′] :: stk ],M, ρ, t)

T (t) = skip :: stk

T,M, ρ _t,ε T [t 7→ stk ],M, ρ

Fig. 3. Local reduction relation.

substitution of statement s in evaluation context K. Actions include a no-op
action, ε, a branch action, b(e, s), an assignment action, a(x , v), a fork action,
f(s), send and receive actions, s(ch), r(ch), a wait action for blocking on a receive
w(ch), a reschedule action, rs(t), and a wait action for blocking on a reschedule,
wa. Formally,

a ∈ Act ::= ε | b(e, s) | a(x , v) | f(s) | s(ch) | r(ch) | w(ch) | wa | rs(t)

The behavior of an action a on the state is given by the function [[a]]A defined in
Figure 4. The function tgen is used to generate a fresh thread identifier for newly
forked threads. It thus satisfies the specification tgen(T ) 6∈ dom(T ). We assume
tgen is a fixed global function, but it is possible to generalize the semantics and
allow the rescheduling function to also pick a new thread identifier generator.
active(T ) denotes the set of active threads in T , i.e., active(T ) = {t ∈ dom(T ) |
T (t) 6= ε}. The statement reduction relation is defined in Figure 5.

[[ε]]A(T,M, ρ, t) = (T,M, ρ)

[[b(e, s)]]A(T,M, ρ, t) = (T [t 7→ s :: T (t)],M, ρ)

[[a(x , v)]]A(T,M, ρ, t) = (T,M, ρ[x 7→ v ])

[[f(s)]]A(T,M, ρ, t) = (T [tgen(T ) 7→ s],M, ρ)

[[s(ch)]]A(T,M, ρ, t) = (T,M [ch 7→M(ch) + 1], ρ)

[[r(ch)]]A(T,M, ρ, t) = if M(ch) > 0 then (T,M [ch 7→M(ch)− 1], ρ) else ⊥
[[w(ch)]]A(T,M, ρ, t) = if M(ch) = 0 then (T,M, ρ) else ⊥
[[rs(t ′)]]A(T,M, ρ, t) = if |active(T )| = 1 then ([t ′ 7→ T (t)],M, ρ) else ⊥

[[wa]]A(T,M, ρ, t) = if |active(T )| > 1 then (T,M, ρ) else ⊥

Fig. 4. Semantics of actions.



Note that semantics of events is deterministic. For example, r(ch)-transition
can only be executed if M(ch) > 0, while w(ch) can only be emitted if M(ch) > 0
(symbol ⊥ in the definition means “undefined”). Note that reschedule only reduces
globally once all other threads in the thread pool have reduced fully and that it
further removes all other threads from the thread pool upon reducing and assigns
a new thread identifier to the only active thread. This requirement ensures that
once reschedule reduces and resets the scheduler state then other threads that
exist prior to the reduction of reschedule cannot immediately taint the scheduler
state again. The reschedule reduction step is deterministic: the value of t is bound
in the respective rule in Figure 2 by function Ψ .

Example 6. To illustrate the issue, consider the following code snippet. This
program branches on a confidential (high) variable h and then spawns one of two
threads with the sole purpose of tainting the scheduler with the state of h. It also
contains a race on a public (low) variable l, which occurs after the rescheduling.

if h > 0 then fork(skip) else fork(skip; skip);

reschedule;

fork(l := 0); l := 1

If reschedule could reduce and reset the scheduler state before the forked thread
had reduced, then the forked thread could reduce between reschedule and the
assignment and therefore affect which of the two racy assignments to l would
win the race. Our operational semantics therefore only reduces reschedule once
all other threads have terminated, which for the above example ensures that the
forked thread has already fully reduced, and cannot taint the scheduler state
after reschedule has reset it.

while e do s, ρ→ε if e then (s; while e do s) else skip

if e then s1 else s2, ρ→b(e,s1) skip if [[e]](ρ) = tt

if e then s1 else s2, ρ→b(e,s2) skip if [[e]](ρ) = ff

x := e, ρ→a(x ,v) skip where v = [[e]](ρ)

skip; s, ρ→ε s recv(ch), ρ→w(ch) recv(ch)

fork(s), ρ→f(s) skip recv(ch), ρ→r(ch) skip

send(ch), ρ→s(ch) skip reschedule, ρ→wa reschedule

reschedule, ρ→rs(t) skip

Fig. 5. Statement reduction.

2.1 Security model

In this section we introduce our formal security model for confidentiality. This is
formalized as a non-interference property, requiring that attackers cannot learn
anything about confidential inputs from observing public outputs.

To express this formally, we assume a bounded t-semilattice L of security
levels for classifying the confidentiality levels of inputs and outputs. We say



that level `1 flows into `2 if `1 v `2. In examples we typically assume L is a
bounded lattice with distinguished top and bottom elements, denoted H and
L, and referred to as high and low, respectively. Given a security typing Γ that
assigns security levels to all program variables and channel identifiers, we consider
two heaps ρ1 and ρ2 indistinguishable at attacker level `A if the two heaps agree
for all variables with a security level below or equal to the attacker security level:

ρ1 ∼`AΓ ρ2
def
= ∀x ∈ Var . Γ (x ) v `A ⇒ h1(x ) = h2(x )

Likewise, we consider two message pools M1 and M2 indistinguishable at attacker
level `A if they agree on all channels with security level below or equal to the
attackers security level:

M1 ∼`AΓ M2
def
= ∀ch ∈ Chan. Γ (ch) v `A ⇒M1(ch) = M2(ch)

Non-interference expresses that attackers cannot learn confidential information
by requiring that executions from attacker indistinguishable initial message pools
and heaps should produce attacker indistinguishable terminal message pools
and heaps, when executed from the same initial scheduler state and scheduling
function. Since scheduling and rescheduling functions have complete access to the
machine state, including confidential variables and channels, we restrict attention
to schedulers and reschedulers that only access attacker-observable variables and
channels. We say that a scheduler sf is an `-scheduler iff it does not distinguish
message pools and heaps that are `-indistinguishable:

`-level(sf )⇔ ∀S, T,M1,M2, ρ1, ρ2.

M1 ∼`Γ M2 ∧ ρ1 ∼`Γ ρ2 ⇒ sf (S, T,M1, ρ1) = sf (S, T,M2, ρ2)

Likewise, a rescheduling function is an `-rescheduler iff it does not distinguish mes-
sage pools and heaps that are `-indistinguishable and only returns `-schedulers:

`-level(Ψ)⇔ ∀sf ,M1,M2, ρ1, ρ2. `-level(π1(Ψ(sf ,M1, ρ1))) ∧
(M1 ∼`Γ M2 ∧ ρ1 ∼`Γ ρ2 ⇒ Ψ(sf ,M1, ρ1) = Ψ(sf ,M2, ρ2))

where π1 is a projection to the first component of the triple.

Definition 1 (Security). A thread pool T satisfies non-interference at attacker
level `A and security typing Γ iff all fully-reduced executions from `A-related
initial heaps (starting with empty message pools) reduce to `A-related terminal
heaps, for all `A-level schedulers sf and reschedulers Ψ :

∀ρ1, ρ2, ρ′1, ρ′2 ∈ Heap.∀M ′1,M ′2 ∈ MPool.∀S, S′1, S′2 ∈ S.∀T ′1, T ′2.∀sf , sf ′1, sf ′2.

`A-level(sf ) ∧ `A-level(Ψ) ∧ ρ1 ∼`AΓ ρ2 ∧ final(T ′1) ∧ final(T ′2) ∧
sf , S, T, λch.0, ρ1 −→∗Ψ sf ′1, S

′
1, T

′
1,M

′
1, ρ
′
1 ∧

sf , S, T, λch.0, ρ2 −→∗Ψ sf ′2, S
′
2, T

′
2,M

′
2, ρ
′
2 ⇒M ′1 ∼

`A
Γ M ′2 ∧ ρ′1 ∼

`A
Γ ρ′2

where final(T )
def
= ∀t ∈ dom(T ). T (t) = ε.



This non-interference property can be specialized in the obvious way from thread
pools to programs by considering a thread pool with only the given program.

In our security model, we focus on standard end-to-end security, i.e., the
attacker is allowed to observe low parts of the initial and final heaps. The security
definition quantifies over all possible schedulers, which in particular means that
the attacker is allowed to choose any scheduler.

To develop some intuition about our security model, let’s consider a few
basic examples. The program fork(x := 1); x := 2 is secure for any attacker
level `A, because in any two executions from the same initial scheduler state
and `A-equivalent initial message pools and heaps, the scheduler must schedule
the assignments in the same order. This follows from the assumption that the
scheduler cannot distinguish `A-equivalent message pools and heaps.

If prior to a race on a low variable a thread branches on confidential informa-
tion, then we can construct a scheduler that leaks this information. To illustrate,
consider the following variant of Example 1 from the Introduction:

fork(if h then skip else (skip; skip)) // Thread 1

fork(l := 1); // Thread 2

fork(l := 2) // Thread 3

If we take the scheduler state to be a natural number corresponding to the
number of statements reduced so far, then we can construct a scheduler that first
reduces Thread 1 and then schedules Thread 2 if Thread 1 was fully reduced in
two steps and Thread 3 if Thread 1 was fully reduced in three steps. Therefore,
this program is not secure.

3 Type system

In this section we present a type-and-effect system for establishing non-interference.
The type-and-effect system is inspired by separation logic [36] and uses ideas
of ownership and resources to track whether accesses to variables and channels
may be racy and to bound the security level of the data that may be learned
through observing how threads are scheduled. Statements are typed relative to a
pre- and postcondition, where the precondition describes the resources necessary
to run the statement and the postcondition the resources owned after executing
the statement. The statement typing judgment has the following form:

Γ | ∆ | pc ` {P} s {Q}

Here P and Q are resources and pc is an upper bound on the security level
of the data that can be learned through knowing the control of the program
up to this point. Context Γ defines security levels for all program variables
and channel identifiers and ∆ defines a static resource specification for every
channel identifier. We will return to these contexts later. Expressions are typed
relative to a precondition and the expression typing judgment has the following



form: Γ ` {P} e : `. Here ` is an upper bound on the security level of the data
computed by e. Resources are described by the following grammar:

P,Q ::= emp | P ∗Q | xπ | chπ | schdπ(`) | dP e`

where π ∈ Q ∩ (0, 1]. The emp assertion describes the empty resource that does
not assert ownership of anything. The P ∗Q assertion describes a resource that
can be split into two disjoint resources, P and Q, respectively. This assertion is
inspired by separation logic and is used to reason about separation of resources.

Variable resources, written xπ, express fractional ownership of variable x with
fraction π ∈ Q ∩ (0, 1]. We use these to reason locally about whether accesses
to a given variable might cause a race. Ownership of the full fraction π = 1
expresses that we own the variable exclusively and can therefore access the
variable without fears of causing a race. Any fraction less than 1 only expresses
partial ownership and accessing the given variable could therefore cause a race.
These variable resources can be split and recombined using the fraction. We
express this using the resource entailment judgment, written Γ ` P ⇒ Q, which
asserts that resource P can be converted into resource Q. We write Γ ` P ⇔ Q
when resource P can be converted into Q and Q can be converted into P . Splitting
and recombination of variable resources comply with the rule: If π1 + π2 ≤ 1
then Γ ` xπ1+π2 ⇔ xπ1 ∗ xπ2 . This can for instance be used to split an exclusive
permission into two partial permissions that can be passed to two different threads
and later recombined back into the exclusive permission.

The other kind of crucial resources, schdπ(`), where π ∈ Q ∩ (0, 1], allows us
to track the scheduler level (also called the scheduler taint). A labeled scheduler
resource, schdπ(`), expresses that the scheduler level currently cannot go above `.
This is both a guarantee we give to the environment and something we can rely on
the environment to follow. This guarantee ensures that level of information that
can be learned by observing how threads are scheduled is bounded by the scheduler
level. Again, we use fractional permissions to split the scheduler resource between
multiple threads: If π1 + π2 ≤ 1 then Γ ` schdπ1+π2(`)⇔ schdπ1(`) ∗ schdπ2(`).
If we own the scheduler resource exclusively, then no one else is relying on the
scheduler level staying below a given security level and we can thus change
the scheduler rely-guarantee level to a higher security level: If `1 v `2 then
Γ ` schd1(`1)⇒ schd1(`2). In general it is not secure to lower the upper bound
on the scheduler level in this way, even if we own the scheduler resource exclusively.
Instead, we must use reschedule to lower the scheduler level. We will return to
this issue in a subsequent section.

State and control flow Before introducing the remaining resources, let’s look at
the typing rules for assignments and control flow primitives, to illustrate how we
use these variable and scheduler resources. The type-and-effect system features
two assignment rules, one for non-racy assignments and one for potentially racy
assignments (T-Asgn-Excl and T-Asgn-Racy, respectively, in Figure 6). If
we own a variable resource exclusively, then we can use the typing rule for
non-racy assignments and we do not have to worry about leaking information



Γ | ∆ | pc ` {P} skip {P}
T-Skip

Γ | ∆ | pc ` {P} s1 {R} Γ | ∆ | pc ` {R} s2 {Q}
Γ | ∆ | pc ` {P} s1; s2 {Q}

T-Seq

Γ ` {P} e : `
P ≡ R ∗ schdπ(`s) ` v `s Γ | ∆ | pc t ` ` {P} si {Q} for i ∈ {1, 2}

Γ | ∆ | pc ` {P} if e then s1 else s2 {Q}
T-If

Γ ` {P} e : `
P ≡ R ∗ schdπ(`s) ` v `s Γ | ∆ | pc t ` ` {P} s {P}

Γ | ∆ | pc ` {P} while e do s {P}
T-While

Γ ` {P} e : ` Γ ` P ⇒ x1 pc t ` v Γ (x )

Γ | ∆ | pc ` {P} x := e {P}
T-Asgn-Excl

Γ ` {P} e : ` P ≡ R ∗ schdπs(`s) Γ ` P ⇒ xπ pc t ` t `s v Γ (x )

Γ | ∆ | pc ` {P} x := e {P}
T-Asgn-Racy

Fig. 6. Typing rules for assignments and control flow statements.

through scheduling. However, if we only own a partial variable resource for a
given variable, then any access to the variable could potentially introduce a
race and we have to ensure information learned from scheduling is allowed to
flow into the given variable. The typing rule for potentially racy assignments
(T-Asgn-Racy) thus requires that we own a scheduler resource, schdπ(`s), that
bounds the information that can be learned through scheduling, and requires
that `s may flow into Γ (x ). Both assignment rules naturally also require that the
security level of the assigned expression and the current pc-level is allowed to flow
into the assigned variable. The assigned expression is typed using the expression

T-Sub
Γ ` {P} e : `1 `1 v `2

Γ ` {P} e : `2

T-Const

Γ ` {P} v : `

T-Var
Γ ` P ⇒ xπ

Γ ` {P} x : Γ (x )

Γ ` {P} e1 : ` Γ ` {P} e2 : `

Γ ` {P} e1 + e2 : `
T-Add

Γ ` {P} e1 : ` Γ ` {P} e2 : `

Γ ` {P} e1 = e2 : `
T-Eq

Fig. 7. Typing rules for expressions.

typing judgment, Γ ` {P} e : `, using the rules from Figure 7. This judgment
computes an upper-bound ` on the security-level of the data computed by the
expression and ensures that P asserts at least partial ownership of any variables
accessed by e. Hence, exclusive ownership of a given variable x ensures both
the absence of write-write races to the given variable, but also read-write races,
which can also be exploited to leak confidential information through scheduling.



Γ | ∆ | pc ` {P} s {Q}
Γ | ∆ | pc ` {P ∗R} s {Q ∗R}

T-Frame

Γ ` P1 ⇒ P2 Γ | ∆ | pc2 ` {P2} s {Q2} Γ ` Q2 ⇒ Q1 pc1 v pc2

Γ | ∆ | pc1 ` {P1} s {Q1}
T-Conseq

Fig. 8. Structural typing rules.

The typing rules for conditionals and loops (T-If and T-While) both require
ownership of a scheduler resource with a scheduler level `s and this scheduler
level must be an upper bound on the security level of the branching expression.
The structural rule of consequence (T-Conseq in Figure 8) allows to strengthen
preconditions and weaken postconditions. In particular, in conjunction with
resource implication rules (Figure 9), it allows to raise the level of scheduler
resource, which is necessary to type branching on high-security data.

Γ ` P ⇒ P ∗ emp Γ ` P ∗Q⇒ Q ∗ P Γ ` (P ∗Q) ∗R⇔ P ∗ (Q ∗R)

Γ ` P ∗Q⇒ P

Γ ` P ⇒ Q Γ ` Q⇒ R

Γ ` P ⇒ R

Γ ` P ⇒ Q

Γ ` P ∗R⇒ Q ∗R

π1 + π2 ≤ 1

Γ ` xπ1 ∗ xπ2 ⇔ xπ1+π2

π1 + π2 ≤ 1

Γ ` schdπ1(`) ∗ schdπ2(`)⇔ schdπ1+π2(`)

`1 v `2
Γ ` schd1(`1)⇒ schd1(`2)

Fig. 9. Resource implication rules.

Spawning threads When spawning a new thread, the spawning thread is able to
transfer some of its resources to the newly created thread. This is captured by
the T-Fork rule given below, which transfers the resources described by P from
the spawning thread to the spawned thread.

Γ | ∆ | pc ` {P} s {Q}
Γ | ∆ | pc ` {P} fork(s) {emp}

T-Fork

Naturally, the newly spawned thread inherits the pc-level of the spawning thread.
Upon termination of the spawned thread, the resources still owned by the spawned
thread are lost. To transfer resources back to the spawning thread or other threads
requires synchronization using channels.

Synchronization From the point of view of resources, synchronization is about
transferring ownership of resources between threads. When sending a message
on a channel, we relinquish ownership of some of our resources, which become
associated with the message until it is read. Conversely, when reading from a
channel the reader may take ownership of a part of the resource associated with



the message it reads. The ∆ context defines a static specification for every channel
identifier that describes the resources we wish to associate with messages on the
given channel. If ∆(ch) = P , then we must transfer resource P when sending a
message on channel ch. However, when receiving a message from channel ch, we
might only be able to acquire part of P , depending on whether our receive may
race with other receives to acquire the resources and how our pc-level relates to
the pc-level of the sender of the message and to the potential scheduler taint.

To capture this formally, our type-and-effect system contains channel resources,
written chπ, erased resources, written dP e`, and channel security levels, Γ (ch).
Like variable resources, channel resources allow us to track whether a given receive
operation on a channel might race with another receive on the same channel
using a fraction π. To receive on a channel ch requires fractional ownership
of the corresponding channel resource. The channel resource can be split and
recombined freely: Γ ` chπ1+π2

⇔ chπ1
∗ chπ2

, with the full fraction, π = 1,
indicating an exclusive right to receive on the given channel. The erased resource,
dP e`, is used to erase variable and channel resources in P with security levels
that are not greater than or equal to the security level `. To illustrate how we
use these features to type send and receive commands, let us start by considering
an example that is not secure, and that should therefore not be typeable.

We start with the simpler case of non-racy receives. In the case of non-racy
receives, we have to prevent ownership transfer of low variables from a high
security context to a lower security context. This is illustrated by the program

fork(if h then send(a) else send(b));

fork(recv(a); l := 1; send(b));

fork(recv(b); l := 2; send(a))

This code snippet spawns a thread which sends a message on either channel a or
b depending on the value of the confidential variable h. Then the program spawns
two other threads that wait until there is an available message on their channel,
before they write to l and message the other thread that it may proceed. This
code snippet is insecure, because if h is initially true, then the public variable l
will contain the value 2 upon termination and if h is initially false, then l will
contain the value 1.

pc v Γ (ch)

Γ | ∆ | pc ` {∆(ch)} send(ch) {emp}
T-Send

P ≡ R ∗ schdπs(`s) pc v Γ (ch) v `s Γ ` P ⇒ ch1

Γ | ∆ | pc ` {P} recv(ch) {P ∗ d∆(ch)eΓ (ch)}
T-Recv-Excl

P ≡ R ∗ schdπs(`s) pc v Γ (ch) = `s Γ ` P ⇒ chπ

Γ | ∆ | pc ` {P} recv(ch) {P ∗ d∆(ch)eΓ (ch)}
T-Recv-Racy

Fig. 10. Typing rules for synchronization primitives.

To type this program, the idea would be to transfer exclusive ownership of
the public variable l along channels a and b. However, our type system prevents



this by erasing the resources received along channels a and b at the high security
level, because the first thread may send messages on a and b in a high security
context (i.e., with a high pc-level).

Formally, the typing rules for send and for exclusive receives are given by
T-Send and T-Recv-Excl in Figure 10. The send rule requires that the security
level of the channel is greater than or equal to the sender’s pc-level and the
exclusive receive rule erases the resources received from the channel using the
security-level of the channel. This means that the second and third threads do
not get exclusive ownership of the l variable and that we therefore cannot type
the subsequent assignments. The exclusive receive rule also requires fractional
ownership of the scheduler resource and that the bound on the taint on the
scheduler level is greater than or equal to the channel security level when receiving
on a channel. This condition is related to the use of reschedule and we will return
to this condition later.

Example 7. To illustrate how to use these rules for ownership transfer, consider
the following variant of the examples from the introduction.

ex7
def
= fork(if h then s1 else s2); /* high computation */

fork(l := 1; send(c));

recv(c); l := 2

It forks off a thread that does a high computation and potentially taints the
scheduler with confidential information. The main thread also forks off a new
thread that performs a write to public variable l, before itself writing to l.
However, a communication through channel c in between these two assignments
ensure that they are not racy and therefore do not leak private information for
any chosen scheduling. We can, for instance, type this example as follows:

Γ | ∆ | L ` {c1 ∗ l1 ∗ h1 ∗ schd1(L)} ex7 {c1 ∗ l1 ∗ schd 1
2
(H)}

where Γ and ∆ are defined as follows: Γ (l) = Γ (c) = L, Γ (h) = H, and ∆(c) = l1.
This typing requires the main thread to pass exclusive ownership of l to the

second thread upon forking, which is then passed back on channel c. Since we only
send and receive on channel c in a low context, we can take the channel security
level to be low for c. When the main thread receives a message on c it thus takes
ownership of dl1eΓ (c) and since Γ (c) = L, it follows that Γ ` dl1eΓ (c) ⇒ l1. The
main thread thus owns the variable resource for l exclusively when typing the
second assignment.

We use the resource implication rules in Figure 11 to reason about erased resources,
by pulling resources out of the erasure. For instance, if the security level of a
variable x is greater than or equal to the erasure security level, then we can
pull it out of the erasure: if ` v Γ (x ) then Γ ` dxπe` ⇒ xπ; and likewise for
channel resources: if ` v Γ (ch) then Γ ` dchπe` ⇒ chπ. Resources that cannot
be pulled out of the erasure cannot be used for anything; owning dxπe` where
Γ (x) 6v ` is thus equivalent to owning emp. The full set of erasure implication



rules is given in Figure 11. Notice that scheduler resources never get erased:
Γ ` dschdπ(`s)e` ⇒ schdπ(`s). Moreover, the resource erasure is idempotent and
distributes over the star operator.

` v Γ (x )

Γ ` dxπe` ⇒ xπ

` v Γ (ch)

Γ ` dchπe` ⇒ chπ Γ ` dschdπ(`s)e` ⇒ schdπ(`s)

Γ ` ddP e`e` ⇒ dP e` Γ ` dP1 ∗ P2e` ⇒ dP1e` ∗ dP2e`

Fig. 11. Erasure implication rules

Racy synchronization In the case of racy receives, where we have multiple threads
racing to take ownership of a message on the same channel, we have to restrict
which resources the receivers can take ownership of even further. This is best
illustrated with another example of an insecure program. The following is a
variant of the earlier insecure program, but instead of sending a message on a
channel in a high context it sends a message on a channel in a low context after
the scheduler has been tainted and the scheduler level has been raised to high.

if h then skip else (skip; skip);

send(c);

fork(recv(c); l := 1; send(c));

recv(c); l := 2; send(c)

With a suitably chosen scheduler, the initial value of the confidential variable h
could decide which of the two racy receives will receive the initial message on
c and thereby leak the initial value of h through the public variable l. We thus
have to ensure that this program is not typeable. Our type system ensures that
this is the case by requiring the scheduler level to equal the channel security level
when performing a potentially racy receive. In the case of the example above, the
scheduler level gets high after the high branching and is still high when we type
check the two receives; since they are racy we are forced to set the security level
of channel c to high — see the typing rule T-Recv-Racy for racy receives in
Figure 10 — which ensures we cannot transfer ownership of the public variable l
on c. This in turn ensures that we cannot type the assignments to l as exclusive
assignments and therefore that the example is not typeable.

Reschedule Recall that if we own the scheduler resource exclusively, then we
can freely raise the upper bound on the security level of the scheduler, since no
other threads are relying on any upper bound. In general, it is not sound to lower
this upper bound, unless we can guarantee that the current scheduler level is
less than or equal to the new upper bound. This is exactly what the reschedule
statement ensures. The typing rule for reschedule (T-Resched given below) thus
requires exclusive ownership of the scheduler resource and allows us to change
this upper bound to any security level we wish. To ensure soundness, we only



allow reschedule to be used when the pc-level is ⊥L, the bottom security level of
the semilattice of security elements.

Γ | ∆ | ⊥L ` {schd1(`1)} reschedule {schd1(`2)}
T-Resched

Example 8. To illustrate how the typing rule for reschedule is used, consider the
following code snippet from the introduction section:

ex8
def
= if h then skip else (skip; skip);

reschedule;

fork(l := 0); l := 1

Recall that this snippet is secure, since reschedule resets the scheduler state
before the race on l. We can, for instance, type this example as follows:

Γ | ∆ | L ` {l1 ∗ h1 ∗ schd1(L)} ex8 {l 1
2
∗ schd 1

2
(L)}

with Γ (l) = L and Γ (h) = H.
To type this example we first raise the upper bound on the scheduler level from

low to high, so that we can branch on confidential h. Then we use T-Resched
to reset it back to low after reschedule. At this point we split both the scheduler
and variable resource for variable l into two, keep one part of each for the main
thread and give away one part of each to the newly spawned thread. The two
assignments to l are now typed by T-Asgn-Racy rule.

Example 9. To illustrate why we only allow reschedule to be used at pc-level ⊥L,
consider the following example, which branches on the confidential variable h
before executing reschedule in both branches.

fork(if h then (reschedule; skip) else (reschedule; skip; skip));

fork(l := 0); l := 1

Despite doing a reschedule in both branches, the subsequent statements in the
two branches immediately taint the scheduler with information about h again,
after the scheduler has been reset. This example is thus not safe.

In the full version of the paper, the reader will find several more intricate
examples justifying the constraints of the rules.

Precision of the type system Notice that mere racy reading or writing from/to
variables does not taint the scheduler. For example, programs

fork(l := 1); fork(m := l); fork(h := 0); h := 1

fork(l := 0); h := h+ 1; l := 1

if l then h := 0 else h := 1; (fork(l := 0); l := 1)

where l, m are low variables and h is a high variable, are all secure in the sense
of Definition 1 and are typable. Indeed, there is no way to exploit scheduling
to leak the secret value h in either of these programs. The scheduler may get



tainted only if a high branch or receiving from a high channel is encountered,
since the number of computation steps for the remaining computation (and hence
its scheduling) may depend on a secret value as, for example, in the program
while h do h := h − 1; (fork(l := 0); l := 1). This example is rejected by our type
system. To re-enable low races in the last example, rescheduling must be used:

while h do h := h− 1; reschedule; (fork(l := 0); l := 1)

The last example is secure and accepted by the type system.
Limitations of our type system include imprecisions such as when both

branches of a secret-dependent if-statement take the same number of steps, e.g.,
if h then skip else skip; (fork(l := 0); l := 1), and standard imprecisions of flow-
insensitive type-based approaches to information flow that reject programs such
as in if h then l := 0 else l := 0 or in (if h then l := 0 else l := 1); l := 42.

Language extensions We believe that the ideas of this section can be extended to
richer languages using standard techniques [32, 51, 17]. In particular, to handle a
language with procedures we would use a separate environment to record types for
procedures, similarly to what is done in, e.g., [34]. (In loc. cit. they did not cover
concurrency; however, we take inspiration from [12] which presents a concurrent
separation logic for a language with procedures and mutable stack variables.)
Specifications for procedures would involve quantification over variables and
security levels.

4 Soundness

Let T be a thread pool and let P , Q map every thread identifier to t ∈ dom(T ) to
a resource. We write Γ | ∆ ` {P} T {Q} if P (t) and Q(t) are typing resources for
every thread T (t) with respect to Γ and ∆. We say that resource R is compatible
if implication Γ ` ~x∈Varx1 ∗~ch∈Chanch1 ∗ schd1(L)⇒ R is provable.

Theorem 1 (Soundness). Let Γ | ∆ ` {P} T {Q} such that the composition
of all the resources in P is compatible, then T satisfies non-interference for all
attacker levels `A.

Notice that the theorem quantifies universally over all attacker levels `A, hence,
one typing is sufficient to guarantee security against all possible adversaries.

As a direct corollary from the theorem, we obtain a compositionality prop-
erty for our type-and-effect system: Given two programs s1, s2 typable with
preconditions P1 and P2, respectively, if P1 ∗ P2 is compatible then the parallel
composition of the two programs is typable with precondition P1 ∗ P2.

Our soundness proof is inspired by previous non-interference results proved
using a combination of erasure and confluence6 for erased programs, but requires
a number of novel techniques related to our reschedule construct, scheduler
resources and support for benign races. A proof of Theorem 1 can be found in
the full version of the paper.

6 a property which guarantees that a given program can be reduced in different orders
but yields the same result (up to a suitable equivalence relation).



5 Related work

The problem of securing information flow in concurrent programs has received
widespread attention. We review the relevant literature along the following three
dimensions:

(1) Scheduler-(in)dependence. Sabelfeld and Sands [41] argue for importance
of scheduler independence because in practice it may be difficult to accommodate
for precise scheduler behavior under all circumstances, and attackers aware of
the scheduler specifics can use that knowledge to their advantage, also known
as refinement attacks. However, designing a scheduler independent enforcement
technique that is also practical comes at a price of additional restrictions. To this
extent, a number of approaches gain permissiveness via scheduler support. This
is manifested either as an assumption on a particular scheduling algorithm, i.e.,
round-robin, or scheduler awareness of security levels of the individual threads.

(2) Permissiveness w.r.t. low races. We are interested in seeing which of
the approaches support benign low non-determinism and permit low races. We
believe this is an important factor from a practical perspective, because an
approach capable of handling low races has the potential of scaling to practical
settings where parallel access, without extra synchronization overhead, to a single
attacker-observable resource, such as network I/O, is desirable.

(3) Termination-(in)sensitivity. In sequential programs, ignoring leaks via
program divergence is often a pragmatic choice, because the attacker is limited
in how much information can be learned via the termination channel [3]. Can
this pragmatic argument be carried over to a concurrent setting? On the one
hand, malicious code with privileges to spawn threads may efficiently leak an
N -bit secret by creating N threads and assigning every thread to leak a specific
secret bit via the thread’s termination behavior [48]. Motivated by this, many
approaches reject programs that may potentially diverge depending on a secret.
On the other hand, while it is possible to use techniques from literature on
program termination to improve precision of the enforcement [29], a pragmatic
attacker can instead use provably-terminating programs that take as much time
as it is necessary for them to make their observations. So, for malicious code, one
really needs to focus on the timing. But controlling timing behavior is difficult
already in sequential programs, because many runtime aspects that have no
source-level representation are in play, including hardware caches [50], memory
management [35], or lazy evaluation [11].

Another reason for our attention on termination-(in)sensitivity is that it is
our experience that technical restrictions that impose termination (or timing)-
sensitivity often simplify soundness proofs. Without such restrictions, proving
soundness for a (weaker) termination-insensitive definition can be more laborious.

Figure 12 presents a high-level summary of the related work. The figure is
by no means exhaustive and lists only a few representative works; we discuss
the other related papers below. Observe how the literature is divided across
two diametric quadrants. Approaches that prioritize scheduler independence are
conservative in their treatment of low races. Approaches that do permit low races
require specific scheduler support are confined to particular classes of schedulers.



Scheduler-dependent or restricted to
particular scheduler classes

Scheduler-independent

Low races
allowed

TI: [30]
TS: [9, 38, 25, 39, 7, 24, 45, 4, 10]

TI: [14] (whole-program), ?
TS: [41] (+timing-sensitive)

Low races
forbidden

- TI: [49, 16, 46]
TS: [16, 26]

Fig. 12. Summary of the related work w.r.t. permissiveness of the language-based
enforcement and scheduler dependence. TI stands for termination-insensitive; TS
stands for termination-sensitive.

We discuss these quadrants in detail, followed by the discussion of rely-guarantee
style reasoning for concurrent information flow and rescheduling.

5.1 Scheduler-independent approaches

Observational determinism The approach of preventing races to individual
locations is initiated in the work on observational determinism by Zdancewic and
Myers [49] (which itself draws upon the ideas of McLean [27] and Roscoe [37]).
Subsequent efforts on observational determinism include the work by Huisman
et al. [16] and by Terauchi [46]. Here, Huisman et al. identify an issue in the
Zdancewic and Myers’ definition of security — they construct a leaky program
within the intended attacker model, i.e., not exploiting termination or timing,
that is accepted by the definition (though it is ruled out by the type system).
They also propose a modified definition and show how to enforce that using self-
composition [8]. Terauchi’s paper presents a capability system with an inference
algorithm for enforcing a restricted version of the Zdancewic and Myers’ definition.

Out of these, the work by Terauchi [46] is the closest to ours because of
the use of fractional permissions, but there are important differences in the
treatment of the low races and the underlying semantic condition. Terauchi’s
type system is motivated by the design goal to reject racy programs of the form
l := 0 || l := 1. This is done through tracking fractional permissions on so-called
abstract locations that represent a set of locations whose identity cannot be
separated statically. Our type system uses fractional permissions in a similar
spirit, but has additional expressivity, (even without the scheduler resource),
because Terauchi’s typing also rules out programs such as l1 := 0 || l2 := 1,
even when l1 and l2 are statically known to be non-aliasing. This is because the
type system has a restriction that groups all low variables into a single abstract
location. While this restriction is a necessity if the attacker is assumed to observe
the order of individual low assignments, this effectively forces synchronization of
all low-updating threads, regardless of whether the updates are potentially racy
or not. We do not have such a restriction in our model.

We suspect that lifting this restriction in the Terauchi’s system to accom-
modate a more permissive attacker model such as ours may be difficult without
further changes to the type system, because their semantic security condition,
being a variant of the one by Zdancewic and Myers [49], requires trace equivalence
up to prefixing (and stuttering) for all locations in the set of the abstract low
location. Without the typing restriction, the definition would appear to have



the same semantic issue discovered by Huisman et al. [16]; the issue does not
manifest itself with the restriction.

Note that adapting the security condition proposed by Huisman et al. [16]
into a language-based setting also appears tricky. The paper [16] presents both
termination-insensitive and termination-sensitive variants of their take on obser-
vational determinism. The key changes are the use of infinite traces instead of
finite ones and requiring trace equivalence instead of prefix-equivalence (up to
stuttering). Terauchi expresses their concerns w.r.t. applicability of this definition
([46], Appendix A). We think there is an additional concern w.r.t. termination-
insensitivity. Because the TI-definition requires equivalence of infinite low traces
it rejects a program such as

l := 1; while secret = 1 do skip; l := 2; while secret = 2 do skip

This single-threaded program is a variant of a brute-force attack that is usually
accepted by termination-insensitive definitions [3] and language-based techniques
for information flow. We, thus, agree with the Terauchi’s conclusion [46] that
enforcing such a condition via a type-based method without being overly conser-
vative may prove difficult.

By contrast, our approach builds upon the technique of explicit refiners [33, 30],
which allows non-determinism as long as it is not influenced by secrets, and does
not exhibit the aforementioned semantic pitfalls.

Whole program analysis can be used to enforce concurrent non-interference
with a high precision. Giffhorn and Snelting [14] use a PDG-based whole program
analysis to enforce relaxed low-security observational determinism (RLSOD) in
Java programs. RLSOD is similar to our security condition in that it allows
low-nondeterminism as long as it does not depend on secrets.

Strong security Sabelfeld and Sands [41] present a definition of strong security
that is a compositional semantic condition for a natural class of schedulers. The
compositionality is attained by placing timing-sensitivity constraints on individual
threads. This condition serves as a foundation for a number of works [22, 13,
19]. To establish timing sensitivity, these approaches often rely on program
transformation [1, 28, 6, 19]. A common limitation of the transformation-based
techniques is that they do not apply to programs with high loops. Another
concern is their general applicability, given the complexity of modern runtimes. A
recent empirical study by Mantel and Starostin [23] investigates performance and
security implications of these techniques, but as an initial step in this direction
the paper [23] has a number of simplifying assumptions, such as disabled JIT
optimizations and non-malicious code.

5.2 Scheduler-dependent approaches

Scheduler-dependent approaches vary in their assumptions on the underlying
scheduler. Boudol and Castellani [9] study system and threads model where the
scheduler code is explicit in the program source; a typing discipline regulates the
secure interaction of the scheduler with the rest of the program [5].



Security-aware schedulers [38, 7] track security levels of the program counters
of each thread, and provide the interface that timing of high computations is not
revealed to the low ones; this interface is realized by suspending all low threads
when there is an alive high thread.

A number of approaches assume a particular scheduling strategy, typically
round-robin [39, 30, 45]. Mantel and Sudbrock [24] define a class of robust
schedulers as the schedulers where “the scheduling order of low threads does
not depend on the high threads in a thread pool” [24]. The class of robust
schedulers appears to be large enough to include a number of practical schedulers,
including round-robin. Other works rely on nondeterministic [44, 40, 8, 25, 21, 4]
or probabilistically uniform [43, 47, 10] behavior.

5.3 Rely-guarantee style reasoning for concurrent information flow
and rescheduling

Rely-guarantee style reasoning Mantel et al. [26] develops a different rely-
guarantee style compositional approach for concurrent non-interference in flow-
sensitive settings. In this approach, permissions to read or write variables are
expressed using special data access modes ; a thread can obtain an exclusive read
access or an exclusive write access via the specific mode. Note that the modes are
different from fractional permissions, because, e.g., an exclusive write access to a
variable does not automatically grant the exclusive read access. The modes also
do not have a moral equivalent of the scheduler resource. Instead, the paper [26]
suggests using an external may-happen-in-parallel global analysis to track their
global consistency. Askarov et al. [4] give modes a runtime representation, and
use a hybrid information flow monitor to establish concurrent non-interference.
Li et al. [20] use rely-guarantee style reasoning to reason about information flows
in a message-passing distributed settings, where scheduler cannot be controlled.
Murray et al. [31] use mode-based reasoning in a flow-sensitive dependent type
system to enforce timing-sensitive value-dependent non-interference for shared
memory concurrent programs.

Rescheduling The idea of barrier synchronization to recover permissiveness of
language-based enforcement appears in papers with possibilistic scheduling [25, 4].
The rescheduling however does more than simple barrier synchronization—it
also explicitly resets the scheduler state, which is crucial to avoid refinement
attacks. The reason that simple barrier synchronization is insufficient is that
despite synchronization at the barrier point, the scheduler state could be tainted
by what happens before threads reach the barrier. For example, if the scheduler
is implemented so that, after the barrier, the threads are scheduled to run in the
order they have arrived to the barrier then there is little to be gained from the
barrier synchronization.

Operationally, the reschedule is implementable in a straightforward man-
ner, which is much simpler than security-aware schedulers [38, 7]. We note that
rescheduling allows programmers to explore the space of performance/expressivity
without losing security. A program that type checks without reschedule, because



there are no dangerous race conditions, does not need to suffer from the perfor-
mance overhead of the rescheduling. Programmers only need to add the reschedule
instruction if they wish to re-enable low races after the scheduler was tainted.
In that light, rescheduling is no less practical than the earlier mentioned barrier
synchronization [4].

While on one hand the need to reschedule appears heavy-handed, we are
not aware of other techniques that re-enable low races when the scheduler can
be tainted. How exactly the scheduler gets tainted depends on the scheduler
implementation/model. Presently, we assume that any local control flow that
depends on secrets may taint the scheduler. This conservative assumption can
naturally be relaxed for more precise/realistic scheduler models. Future research
efforts will focus on refining scheduler models to reduce the need for rescheduling
and/or automatic placement of rescheduling to lessen the burden on programmers.
The latter can utilize techniques from the literature on the automatic placement
of declassifications [18].

5.4 This work in the context of Figure 12

Developing a sound compositional technique for concurrent information flow that
is scheduler-independent, low-nondeterministic, and termination-insensitive at
the same time—a point marked by the star symbol in Figure 12—is a tall order,
but we believe we come close. Our only non-standard operation is reschedule
that we argue has a simple operational implementation and can be introduced to
many existing runtimes.

6 Conclusion and Future Work

In the paper, we have presented a new compositional model for enforcing in-
formation flow security against internal timing leaks for concurrent imperative
programs. The model includes a compositional fine-grained type-and-effect system
and a novel programming construct for resetting a scheduler state. The type
system is agnostic in the level of adversary, which means that one typing judgment
is sufficient to ensure security for all possible attacker level. We formulate and
prove the soundness result for the type system.

In future work, we wish to support I/O; our proof technique appears to
have all the necessary ingredients for that. Moreover, we wish to investigate a
generalization of our concurrency model to an X10-like [42, 30] setting where
instead of one scheduler, we have several coarse-grained scheduling partitions.
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