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Abstract. Predictive mitigation is a general system technique for con-
trolling timing channels that works by delaying timing of the attacker-
observable system events in a deterministic manner. Language-based
predictive mitigation is an instantiation of this technique to a language-
based setting. This paper observes that in settings with asynchronous
I/O it is possible to improve the performance and permissiveness of the
language-based predictive mitigation by propagating mitigating delays
to the I/O edges instead of delaying the whole computation, without
losing soundness. This technique brings two advantages. First, we can
avoid some of the otherwise unnecessary delays in a multi-level setting.
Second, mitigating delays can be accumulated allowing for less accurate
predictions.

1 Introduction

Ensuring that computer systems do not leak confidential information via their
timing behavior remains an important challenge in computer security. The prob-
lem of timing channels is known to be dangerous in practice. Security literature
contains numerous examples of sophisticated timing attacks demonstrating the
feasibility of remote timing attacks [9], with recent examples showing how timing
attacks can compromise user behavior [21, 23], and can be further exploited
to leak contents of large databases [15]. Recent approaches show how effictive
timing attacks be automatically synthesized given a source of an application [20].
Moreover, in systems permitting third-party code to access sensitive data, timing
channels can be obviously be used to efficiently launder secrets.

In this work, we focus on the timing channels that have control flow repre-
sentation, such as the one in Figure 1. Here, an attacker observing messages on
channel L can infer which of the branches is taken based on the timing difference
of the two messages. We do not consider runtime side channels that originate via
hardware or runtime aspects of the system such as caches [6, 19], lazy evalua-
tion [10, 22], or memory management [18]. Our approach is complementary to
many existing techniques that focus on these side channels.

Most techniques for mitigating timing channels impose some form of pre-
dictable behavior on the timing of the secret-dependent computations. While this
typically affects system performance, the trade-offs are justified by the resulting
strong security guarantees.
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send(L, 0)
if (h) {

// Long computation
} else {

skip
}
send(L, 1)

Fig. 1: Example timing channel

In this paper, we examine one such technique, namely the language-based
predictive mitigation of [24]. This technique requires the programmer to wrap
secret-dependent computations with mitigating padding statements which en-
forces constant-time behavior and hence removes the possible timing leaks.

We observe that, in a programming model with asynchronous I/O the language-
based predictive mitigation can be improved to avoid some of the unnecessary
delays. Rather than delaying the whole computation we propose to continue the
execution, but remember the amount of the delay and propagate the delay to the
network runtime. We show how the delays need to be recorded in the program
semantics and formally prove the soundness of our proposal. An added bonus of
the new technique that it allows for the predictions to accumulate throughout
the program execution, requiring less precise bounds from the programmer.

We evaluate our proposal using a prototype implementation demonstrating
that it leads to efficient CPU utilization on a few examples without compromising
security.

The rest of the paper is structured as follows. Section 2 presents our system
model of a programming language with asynchronous I/O. Section 3 recalls the
language-based predictive mitigation and describes how it may be improved
under our attacker model. Section 4 formalizes our language. In particular, we
show how a carefully set up semantics can address some of the shortcoming of the
classical predictive mitigation. Section 5 proves the soundness of our approach,
and Section 6 reports on the preliminary evaluation. We discuss the related work
in Section 7, and conclude in Section 8.

2 System model

We investigate mitigation of timing channels in a setting of a simple imperative
language extended with asynchronous I/O. The core of the mitigation is based
on the ideas from [24].

The main deviation from the prior work is that our attacker model is weaker.
Rather than assuming a co-resident adversary that is capable to observe the
timing of the intermediate assignments, we consider a network-level attacker who
only observes the I/O effects and their timing.
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2.1 Security lattice

We assume the information is classified according to a confidentiality level (or
security level). The security levels form a hierarchy, where higher levels are more
confidential. Moreover, we further restrict ourselves to security levels that form a
lattice [11].

L

M N

H

Fig. 2: A security lattice

In this representation, the security levels are ordered according to a relation v
that reads “flows to”. The “flows to” relation is a partial order on the set of
security levels. For instance, the lattice described by Figure 2 represents the
following relations: L v M1, L v M2, M1 v H, M2 v H, and by transitivity,
L v H.

The lattice representation also assume that there exists an unique least upper
bound of a set of level. We note t the binary operation that returns the least upper
bound of two levels. In the previous example, we have for instance M tN = H,
LtM =M and H tM = H.

In the rest of the paper, we use variables named h, h1, h2, . . . if they are of
level H, m,m1,m2, . . . if they are of level M , etc.

2.2 The language

Figure 3 presents the syntax of our language. Expressions e range over integer
constants, variables, and total arithmetic operations. Commands c include the
standard imperative constructs, extended with two communication primitives
send(l, e) and recv(e, l) and a nonstandard command for padding pad(e, l) do c.

e ::= n | x | e1 ? e2
c ::= skip | x := e | c1; c2 | if e then c1 else c2 | while e do c

| send(l, e) | x← recv(l)

| pad(e, l) do c

Fig. 3: Language grammar

Communication in the language occurs over a set of channels. For simplicity,
we conflate the channels with security levels l. The semantics of the send primitive
is asynchronous; the semantics of receive is blocking. This setup allows us to
explore the potential of the asynchronous communication without losing generality.
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We explain the padding in Section 3.1 and present the formal semantics of the
language in Section 4.1.

2.3 Attacker model

We consider a family of attackers, parametrized by their security levels. We
assume that attackers have access to the internal working of the system, typically
the source code, and observe the I/O interactions at their corresponding levels,
including the timing of the communications. The attackers, however, cannot
observe the order of the internal events in the program or communication at
levels different from theirs. In particular, the attacker at level L can observe the
I/O at the channel L but not on the channels with level l such that L 6v l.

3 Mitigating timing leaks for asynchronous I/O

3.1 Language-based predictive mitigation

An effective way to control a timing channel as the one in Figure 1 is to ensure
that the timing of the secret branch does not depend on the secret. This is
the idea that is at the core of predictive mitigation [3, 25] that delays attacker-
observable events in a systematic way. Language-based predictive mitigation [24]
is an instantiation of this idea, where the delays can be provided as program
expressions evaluated at runtime, which allows programming with fine-grained
bounds. A security type system guarantees that the expressions specifying the
bounds do not themselves reveal any information.

The parameters of the command pad(e, l) do c are an expression e representing
the allowed time for the execution, and a level l that describes the security level
of the commands executed inside the padded section.

Figure 4 is a version of the example from Figure 1 rewritten with predictive
mitigation. Here, the padding command ensures that the secret-dependent com-
putation takes 50 units of time regardless of the value of the secret variable h. We
refer to this delaying semantics of the padding command as classical mitigation.

send (L, 0);
pad (50, L) {

if (h) {
// Long computation

} else {
skip;

}
}
send (L, 1);

Fig. 4: Updated program with pad command
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3.2 A shortcoming of classical mitigation

While the classical mitigation padding soundly mitigates timing attacks, we
observe that it also introduces unnecessary delays for high channels.

To see this, consider Figure 5. Suppose there are three security levels L v
M v H. Then, the observer H can access the value of variable m. However, the
padding also delays the execution of the send(0, H) command even though strictly
speaking it is unnecessary. Only the low send needs to be delayed.

pad (50, L) {
if (m) {

// Long computation
} else {

skip
}

}
send (0, H)
send (0, L)

Fig. 5: Example demonstrating limitations of the classical mitigation

3.3 Addressing the shortcoming

Our proposal to address this shortcoming is to propagate the delays from the
main execution to the communication runtime. We achieve this through the
following design.

– We assume that handling of network messages is handled in a parallel
communication runtime process that does not interfere with the timing of
the main execution.

– The padding command does not delay the execution at the end of its block.
Instead, it immediately proceeds to the next command, remembering the
amount of the delay that it would have otherwise spent at the end of the pad
block.

– The accumulated delays are recorded in the semantics, and are propagated to
the communication runtime. Sending of a message does not happen immedi-
ately. Instead, we record when in the future the message needs to be sent. This
avoids unnecessary delays on higher channels, such as the H-communication
in the earlier example. This is also a natural place for introducing addi-
tional delays, if the programming model assumes asynchronous semantics for
sending.

– Because receive on a channel is blocking, we need to wait through the
accumulated delay on the levels that are as restrictive as the level of the
channel on which the message is received.

We refer to our proposed technique as optimized mitigation. We observe that
this proposal does not require any changes to the syntax of the source language.
The next section describes the semantics of the padding and the communication
primitives in detail.
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On the CPU utilization Note that the optimized technique can change the way
the CPU is utilized. Consider program in Figure 6 that involves padding in a
loop. Figure 7 presents the abstract utilization of a CPU during the execution
of this program. Here, the solid lines correspond to the processor executing an
instruction, and the dashed line correspond to the idling execution.

Three are three timelines in this figure. The first timeline depicts the commu-
nication process that is always active in order to send messages at the right time.
The second and third timelines correspond to the utilization of the processor
during the execution of the same program under both classical and the optimized
mitigation strategies. The arrows represent pushing messages to the message
pool, and connect the times of encountering the send commands in the program
with the the times at which the messages must be sent.

While the overall time during which the processor is utilized (the sum of the
solid lines) is the same, there are fewer interruptions in the execution of the
optimized mitigation. We conjecture that fewer interruptions may lead to better
CPU utilization, due to the reduced overhead of the OS-level context-switching
and consequently better cache behavior.

i = 0;
while (i < 2) do {

padTime = 3;
pad (padTime, L) {

skip; // placeholder for a high computation
}
send (i, L);

}

Fig. 6: A program with padding in a loop

Classical mitigation

(0, L) (1, L)

(0, L) (1, L)

Network messages

Optimized mitigation

Fig. 7: Timing of the messages and the CPU utilization for example in Fig. 6

4 Formalization

This section defines the formal semantics for the language introduced in Sec-
tion 2.2. We extend the grammar of the language with an auxiliary command
padr(n0, l, p, n1, n2) do c. This command does not appear in the source programs,
but is used at runtime to store information about nested paddings.

c ::= . . .

| padr(n0, l, p, n1, n2) do c
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We explain the runtime padding command in detail in Section 4.1.

Representation of time We consider an abstract time represented by integers.
Each instruction is executed in exactly one tick, with the exception of the recv
instruction.

Representation of sent and received messages A program can send and receive
information to/from a channel. Every message is described by a triplet (v, l, t)
where v is the information being sent, l is the security level representing the
channel, and t is the time at which the message was received or sent.

The messages that are received on a channel are determined by the previous
history of messages sent and received on this channel. That is, we suppose there
exists an input strategy [17] function sl for each channel l that takes the history
of messages (s, r) on the channel as an input and returns a value v.

4.1 Semantics

The semantics of expressions is given by the big-step relation 〈m, e〉 ⇓ n that
specifies that expression e evaluates to value n in memorym. Here,m is a memory
represented as a map from the variable names to values in R.

The semantics of commands is given by the small-step relation

〈c,m, t, s, r, p〉 → 〈c′,m′, t′, s′, r′, p′〉

where 〈c,m, t, s, r, p〉 and 〈c′,m′, t′, s′, r′, p′〉 are configurations, which are tuples
of the form 〈c,m, t, s, r, p〉 where:

– m is the memory
– t is the current time (t ∈ N)
– s is the set of sent messages, as described in the previous subsection. We do

not require that if (v, l, t′) ∈ s, then t′ ≤ t: a message that does not satisfy
this is a message that will be sent in the future, as soon as the given time is
reached

– r is the set of received messages
– p is a map of padding delays. It maps security levels to N, effectively storing

delay information per level. These delays correspond to the time that must be
spent idling at the end of a padded section in classical predictive mitigation.
These delays may be negative, which means the program is running late.

Figures 8and 9 provides the transition rules for the basic language (without
communication or predictive mitigation).

Communication and predictive mitigation semantics The semantics of
communication operations are given in Figure 10a, and the semantics of mitigation
are given in Figure 10b. These commands raise the security level to l, and execute
the command c in this context.
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〈m,n〉 ⇓ n 〈m,x〉 ⇓ m[x]
〈m, e1〉 ⇓ n1 〈m, e2〉 ⇓ n2

〈m, e1 ? e2〉 ⇓ n1 ? n2

Fig. 8: Evaluation relation for expressions

〈skip,m, t, s, r, p〉 → 〈stop,m, t+ 1, s, r, p〉

〈m, e〉 ⇓ v
〈x := e,m, t, s, r, p〉 → 〈skip,m[x← v], t+ 1, s, r, p〉

〈c1,m, t, s, r, p〉 → 〈stop,m′, t′, s′, r′, p′〉
〈c1; c2,m, t, s, r, p〉 → 〈c2,m′, t′, s′, r′, p′〉

〈c1,m, t, s, r, p〉 → 〈c′1,m′, t′, s′, r′, p′〉 c′1 6= stop

〈c1; c2,m, t, s, r, p〉 → 〈c′1; c2,m′, t′, s′, r′, p′〉

〈m, e〉 ⇓ v v 6= 0 =⇒ i = 1 v = 0 =⇒ i = 2

〈if e then c1 else c2,m, t, s, r, p〉 → 〈ci,m, t+ 1, s, r, p〉

〈m, e〉 ⇓ v v 6= 0

〈while e do c,m, t, s, r, p〉 → 〈c; while e do c,m, t+ 1, s, r, p〉

〈m, e〉 ⇓ v v = 0

〈while e do c,m, t, s, r, p〉 → 〈stop,m, t+ 1, s, r, p〉

Fig. 9: Operational semantics: the basic commands
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〈m, e〉 ⇓ v p(l) = t′ s′ = {(l, v, t+ t′)} ∪ s p(l) ≥ 0

〈send(l, e),m, t, s, r, p〉 → 〈stop,m, t+ 1, s′, r, p〉

s′ = {(l′, v′, t′) ∈ s, l′ = l} r′ = {(l′, v′, t′) ∈ r, l′ = l}

sl(s
′, r′) = v p(l) ≥ 0 p′ = l′ 7→

{
0 if l v l′

p(l′)− p(l) otherwise

〈x← recv(l),m, t, s, r, p〉 → 〈stop,m[x← v], t+ p(l) + 1, s, {(l, v, t+ p(l))} ∪ r, p′〉

s′ = {(l′, v′, t′) ∈ s, l′ = l}
r′ = {(l′, v′, t′) ∈ r, l′ = l} sl(s

′, r′) = v p(l) < 0

〈x← recv(l),m, t, s, r, p〉 → 〈stop,m[x← v], t+ p(l) + 1, s, {(l, v, t+ p(l))} ∪ r, p〉

(a) Semantics of communication operations

〈m, e〉 ⇓ v
〈pad(e, l) do c,m, t, s, r, p〉 → 〈padr(v, l, p, v, t+ 1) do c,m, t+ 1, s, r, p〉

∆t = t′ − t v −∆t ≥ 0 c′ 6= stop 〈c,m, t, s, r, p〉 → 〈c′,m′, t′, s′, r′, p′〉
〈padr(v, l, p0, v0, t0) do c,m, t, s, r, p〉 → 〈padr(v −∆t, l, p0, v0, t0) do c′,m′, t′, s, r′, p′〉

∆t = t′ − t v −∆t ≥ 0 〈c,m, t, s, r, p〉 → 〈stop,m′, t′, s′, r′, p′〉

p′′ = l′ 7→

{
p0(l

′) + v0 − (t′ − t0) if l 6v l′

p′(l′) otherwise

〈padr(v, l, p0, v0, t0) do c,m, t, s, r, p〉 → 〈stop,m′, t′, s′, r′, p′′〉

(b) Semantics of predictive mitigation

Fig. 10: Semantics of communication and predictive mitigation

We use a runtime-level padr command to ensure nested paddings are correctly
handled. When entering a padded section via the command pad, the time the
execution is allowed to spend in the section v0, the current time t0 and the current
padding structure p0 are stored in the runtime command. They are constant
during the execution of the padded section. At the end of the padded section,
this information is used to construct the new padding structure in the following
manner:

– if the section’s level flows to another level, then this level must not be delayed
further.

– otherwise, the value from p0 is restored, and increased by the time differential.

When sending a message via the command send(e, l), the expression is evalu-
ated immediately and the message is set to be sent at later time t+ p(l), which
is exactly the time at which the message would have been sent had the execution
waited at the end of the previous padded sections.
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The reception of message from l is synchronous, as it waits for all messages
to l to be sent (that is it waits for p(l) ticks), and then proceeds to receive the
message. The advantage of this is that it allows easier synchronization mechanism.
Since receiving a message induces blocking, we decrease the values stored in p.

“Opportunistic” mitigation Our semantics allow p(l) to be negative. Since the
only observable events are the messages, we allow the execution to continue even
if it exceeds the time limit of a padding, as long as no low send operation is
encountered. This gives the program an opportunity to catch up on the delay if
another generous padded section is encountered before a low send.

If a send instruction is encountered while p(l) is negative, this means that
our padding values were incorrect. In our setup, for simplicity, we chose to stop
the execution at this point. From the point of view of predictive mitigation, this
corresponds to the prediction miss [3], and can be addressed by introducing
penalty for future predictions.

4.2 Type system

Our enforcement is a standard Denning-style security type system. Figures 11
and 12 present the typing rules for expressions and commands, respectively. The
typing judgment for commands is of the form Γ ` e : l. This judgment assigns
security level l to expression e in a typing environment Γ that maps variable
names to security levels. The typing judgement for commands has the form
Γ, pc ` c. This judgment says that program c is well typed in environment Γ
when the program counter label is at the level pc.

This type system eliminates standard direct and indirect flows. The non-
standard aspect of this type system is that the program counter label can be
raised explicitly only with the padding command. Finally, note also that the type
system is termination-insensitive. Termination-insensitivity is further reflected in
our noninterference condition in the next section.

5 Soundness

We prove a form of noninterference. In two different runs starting from initial
configurations that are indistinguishable for an attacker ladv, if both runs end,
then the two final configuration are indistinguishable for the same attacker ladv.

5.1 Low-equivalences

To formulate our noninterference theorem, we introduce a few technical definitions.
Memory agreement at a level relates attacker’s initial observations.

Definition 1 (Memory agreement at security level l). Let l ∈ L be a
security level. Two memories m1 and m2 agree at security level l, denoted
m1 ∼l m2, when:

∀l′ v l,∀x, Γ (x) = l′ =⇒ m1(x) = m2(x)
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T-nat

Γ ` n : l

T-Var
Γ (x) = l

Γ ` x : l

T-op
Γ ` e1 : l1 Γ ` e2 : l2

Γ ` e1 ? e2 : l1 t l2

Fig. 11: Typing rules for expressions

Γ, pc ` skip

T-Assign
Γ ` e : l pc t l v Γ (x)

Γ, pc ` x := e

T-Seq
Γ, pc ` c1 Γ, pc ` c2

Γ, pc ` c1; c2

T-If
Γ ` e : l l v pc Γ, pc ` ci, (i = 1, 2)

Γ, pc ` if e then c1 else c2

T-While
Γ ` e : l l v pc Γ, pc ` c

Γ, pc ` while e do c

T-send
Γ ` e : l′ pc t l′ v l

Γ, pc ` send(e, l)

T-recv
pc t l v Γ (x) pc v l Γ ` e : l′ l′ v pc

Γ, pc ` x← recv(l)

T-pad
Γ ` e : l′ l′ v pc Γ, pc t l ` c

Γ, pc ` pad(e, l) do c

T-Padr
Γ, pc ` pad(v, l) do c

Γ, pc ` padr(v, l, p0, v0, t0) do c

Fig. 12: Typing rules for commands
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Throughout execution, the attacker also obtains access to the messages that
are sent and received on the attacker’s channel. This is captured by the definition
of message agreement.

Definition 2 (Message agreement at security level l). Let l ∈ L be a
security level. Two sets of messages agree at security level l, denoted s1 ∼l s2,
when:

∀l′ v l,∀v,∀t, (v, l′, t) ∈ s1 ⇐⇒ (v, l′, t) ∈ s2
Note that we use definition for both received and sent messages.

We lift the definitions of equivalence from memories and messages to com-
mands and configurations. For commands, we note that because of the nested
paddings, their equivalence is slightly more complicated than simple syntactic
matching.

Definition 3 (Equivalence of commands). Let ladv be a security level.
c1 ∼ladv c2 if and only if at least one of these conditions holds:

– c1 = c2
– c1 = d1; d

′
1, c2 = d2; d

′
2, d1 ∼ladv d2, and d′1 = d′2

– c1 = padr(v, l, p1, v1, t1) do d1, c2 = padr(v, l, p2, v2, t2) do d2, d1 ∼ladv d2,
and for all l′ v ladv, p1(l) + t1 + v1 = p2(l) + t2 + v2

The equivalence of configurations pulls all of the above definitions together.

Definition 4 (Equivalence of configuration at level ladv). Let ladv be a
security level. Two configurations are equivalent at level ladv, denoted:

〈c1,m1, t1, s1, r1, p1〉 ∼ladv 〈c2,m2, t2, s2, r2, p2〉

when

1. c1 ∼ladv c2
2. m1 ∼ladv m2

3. s1 ∼ladv s2
4. r1 ∼ladv r2
5. for all l v ladv, p1(l) + t1 = p2(l) + t2

The property 5 above is the key nonstandard ingredient of this definition,
and is indeed at the heart of the noninterference proof. Two configurations are
allowed to differ on their concrete timing as long as the accumulated delays count
for the difference in their executions.

5.2 Noninterference

Our main technical result is that well-typed programs do not leak information
via their timing behavior under our runtime. For simplicity, we formulate our top-
level definition as a variant of termination-insensitive noninterference [4], noting
that the proof technique in Appendix B fully supports a progress-insensitive
condition. Termination-insensitivity is also a technical convenience for dealing
with incorrect paddings, without having to introduce the complexity of penalizing
predictions [24].
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Theorem 1 (Noninterference). Let c be such that Γ, pc ` c. Then for all
〈c,m1, t1, s1, r1, p1〉 ∼ladv 〈c,m2, t2, s2, r2, p2〉 such that:

〈c,m1, t1, s1, r1, p1〉 →n1 〈stop,m′1, t′1, s′1, r′1, p′1〉

and
〈c,m2, t2, s2, r2, p2〉 →n2 〈stop,m′2, t′2, s′2, r′2, p′2〉

it holds that:

〈stop,m′1, t′1, s′1, r′1, p′1〉 ∼ladv 〈stop,m′2, t′2, s′2, r′2, p′2〉

Proof. The proof of this Theorem is in Appendix B

6 Initial evaluation

We have implemented both classical predictive mitigation and our improvement
for a simple language as an interpreter in OCaml, abstracting the communica-
tion layer. While the results of this evaluation are preliminary, we believe they
demonstrate that the proposed technique has a potential that warrants further
studies.

Timing models To improve our capacity to analyze this work, our implementation
supports two kind of time models: the abstract and the concrete. The abstract
time is measured as the steps in the interpreter, and is extracted from the
semantics of the language. The concrete time measures the actual time on the
system, and roughly corresponds to the the real execution time of the instructions.

6.1 Modular exponentiation and Login

We measured the timing of messages and the duration of the execution of two
programs: the square-and-multiply modular exponentiation described in [14] and
that is used in RSA, and a login system [8]. These programs are given in Figure 15
and Figure 16in Appendix A.

As expected, the messages are sent at the same time in both version. Results
(averaged over 1000 executions) regarding the execution time are given Figure 13,
in milliseconds.

Classical mitigation Optimized mitigation Improvement
Modular exponentiation 1.80 0.28 6.4×

Login 0.23 0.19 1.2×

Fig. 13: Execution time for Modular exponentiation and Login examples

This results are in line with our expectations. In particular, because the mod-
ular exponentiation contains a padded section in loop, the optimized mitigation
shows a considerable improvement. The classical mitigation forces to wait each
time the loop is entered, while the optimized one does not, which explains these
results.
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6.2 Computation of a share’s value

We also evaluated the performances of a program that compute share values [2],
for array size ranging from 1 to 200, averaged over 200 executions. The code is
given Figure 17 in Appendix A. Figure 14 depicts the relative performance of
the classical and improved mitigation using real time.

Fig. 14: Average duration of a run of the ShareValue program

As expected, the optimized version is faster than the classical version. In both
version, the message are again sent at the same time.

Moreover, after a certain size, we notice that some padded sections begin to
timeout. This cause the classical mitigation version to stop the execution, but is
not an issue in the optimized version, as on average the timeout is not reached.

7 Related work

We briefly review the related work on mitigation of timing channels that have
source-level representation.

Code transformation Code transformation eliminates some of the timing
channels, by using techniques such as cross-copying [2] which pads branches with
dummy statements, unification [13] which improves the previous technique by
only inserting statements if they are needed, conditional assignment [16] which
performs both computations, the result being encoded with bit masks and bitwise
operations, and transactional branching [5], which wraps branches in transactions
and commit only one of them, the other being aborted.

A study of their performance [14] shows that these transformations can
significantly decrease the performance of programs. Contrary to our approach,
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these code transformations decrease the expressiveness of the language, as they
disallow loops with secret guards.

Secure multi-execution Secure multi-execution [12] ensures timing by ensuring
that outputs on low channels are produced from computations that never access
the real secrets. The downside of the technique is the overhead in the number of
runs, which increases with the size of the security lattice.

8 Conclusion

Language-based predictive mitigation is an effective method to control timing
channels. We propose an optimization of this method, that leverages asynchronous
I/O to move the delays from the computation to the inputs and outputs. We
show how a combination of the static type system and a carefully crafted runtime
semantics ensure a form of noninterference. Our initial evaluation suggests that
this technique is promising and can yield significant performance improvements
in certain cases.

Further work A prominent direction of future is extending our approach to
reactive programming [7], and introduce the asynchronous version of the receive
statement with callbacks. Other directions include efficient implementation of
the runtime mechanism with more real-world evaluation.
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h_k := 65535;
n := 573;

y := 74;
h_r := 1;

i := 0;
while (i - 32) {

pad (0.00005, H) {
if ((h_k % 2) = 1) {

h_r := (h_r * y) % n; skip;
} else {

skip;
}

}
y := (y * y) % n;
h_k := h_k / 2;
i := i + 1;

}
h_res := h_r % n;

send(L, @h_res);

Fig. 15: Square-and-multiply modular exponentiation

the experiments, we used the same predefined sequence of input values in all
executions.

In the program ShareValue, Figure 17, the variable s represents the size of
the array.
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h_username := 3;
h_pass := 5;

keep_looping := 1;
while (keep_looping) {

u <- L;
p <- L;

pad (0.00003, H) {
if (u = h_username) {

skip; skip; skip; skip; skip;
if (p = h_pass) {

h_login := 1;
} else {

h_login := 0;
}

} else {
h_login := 0;

}
}

send (L, @h_login);

if (u = 5) {
keep_looping := 0;

} else {
skip;

}
}

Fig. 16: Login system
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s := 50

while (s - i) {
h_id[i] <- H;
h_id[i] := h_id[i] % 32;
h_qty[i] <- H;
h_qty[i] := h_id[i] % 32;
i := i + 1;

}

h_shareVal := 0;
i := 0;

while (s - i) {
pad(0.0007, H) {

if (h_id[i] = h_special_share) {
h_shareVal := h_shareVal + (val * h_qty[i]); skip;

} else { skip; }
}
i := i + 1;

}

send(H, h_shareVal);

Fig. 17: ShareValue program
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B Soundness

Lemma 1 (noninterference for expressions). Let Γ be a typing environ-
ment, l a security level, m1 and m2 two memories such that m1 ∼l m2, and e
an expression such that Γ ` e : l′ and 〈e,m1〉 ⇓ v1 and 〈e,m2〉 ⇓ v2.

Then we have:
l′ v l =⇒ v1 = v2

Proof. By induction on the typing derivation Γ ` e : l′.

First rule: v1 = v2 = n
Second rule: e = x, where x is a variable. Suppose l′ v l. We have Γ (x) = l′,

therefore by the definition of ∼l, m1(x) = m2(x). Hence v1 = v2.
Third rule: e = e1 ? e2 and l′ = l1 t l2. Suppose l′ v l, then l1 v l and l2 v l.

Therefore by induction hypothesis applied to both l1 and l2, v1 = v2.
ut

Lemma 2 (Transitivity of ∼l). ∼l is transitive.

Proof. Immediate by definition of ∼l. ut

Lemma 3 (Public updates preserve ∼l). Let Γ be a typing environment, l
a security level, m1 and m2 two memories such that m1 ∼l m2 and x a variable
such that Γ (x) v l. Then for all values v, m1[x := v] ∼l m2[x := v]

Proof. Immediate by the definition of ∼l. ut

B.1 Well-formedness and preservation

Definition 5 (Well-formedness of configurations).
We say that a configuration 〈c,m, t, s, r, p〉 is well-formed w.r.t. a typing

environment Γ and a level pc when either c is stop, or the program is well-typed,
i.e. Γ, pc ` c.

Lemma 4 (Preservation of well-formedness).
Let Γ be a typing environment, pc a level, and 〈c,m, t, s, r, p〉 a configuration,

such that the configuration is well-formed w.r.t. Γ and pc.
Supppose this configuration takes a step

〈c,m, t, s, r, p〉 → 〈c′,m′, t′, s′, r′, p′〉.

Then the resulting configuration 〈c′,m′, t′, s′, r′, p′〉 is also well-formed w.r.t. Γ
and pc.

Proof. By induction on c.

Case c = skip: Can only step to stop.
Case c = x := e: Can only step to stop.
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Case c = c1; c2:
If 〈c1,m, t, s, r, p〉 → 〈stop,m′, t′, s′, r′, p′〉 then 〈c1; c2,m, t, s, r, p〉 → 〈c2,m′, t′, s′, r′, p′〉
which is well-formed because c1; c2 is well-formed.
Otherwise, there is c′1 such that 〈c1,m, t, s, r, p〉 → 〈c′1,m′, t′, s′, r′, p′〉 and
〈c1; c2,m, t, s, r, p〉 → 〈c′1; c2,m′, t′, s′, r′, p′〉.
By induction hypothesis applied to 〈c1,m, t, s, r, p〉, 〈c′1,m′, t′, s′, r′, p′〉 is
well-formed, therefore 〈c′1; c2,m′, t′, s′, r′, p′〉 is well-formed as well.

Case c = if e then c1 else c2: Can either step to c1 or c2, which are well-
typed.

Case c = while e do c′: Can either step to stop, which gives a well-formed
configuration, or to c′; c which is well-typed.

Case c = send(e, l): Can only step to stop
Case c = recv(l): Can only step to stop
Case c = padr(v, l, p0) do d: Can either step to stop, in which case the resulting

is well-formed, or to another configuration of the form 〈padr(v′, l, p0) do d′,m′, t′, s′, r′, p′〉.
Since the first configuration is well formed, it means that Γ, pc ` pad(v, l) do c′.
It is enough to prove that Γ, pc t l ` d′.
By applying the induction hypothesis to d, this is the case.

Case c = pad(e, l) do c′: This is true by the rule T-Padr.
ut

B.2 Auxiliary semantics

We define an auxiliary semantics that represents an instrumentation of the original
semantics with additional information. Because our noninterference is proven for
all levels ladv, our instrumentation is parameterized by the security level ladv.

First, we define auxiliary semantics with events:

α ::= ε | A(x, v, l) |Msent(v, l, t)

where x is the variable name, v is the value and l is the security level of the
assignment. A(x, v, l) represents an assignment, and Msent(v, l, t) represents a
message sent. Then, we define the auxiliary semantics at level ladv for each of
the commands, as follows:

Assignment

S-Assign-Pub
〈m, e〉 ⇓ v Γ (x) = l l v ladv

〈x := e,m, t, s, r, p〉 →A(x,v,l) 〈stop,m[x← v], t+ 1, s, r, p〉

S-Assign-Sec
〈m, e〉 ⇓ v l 6v ladv

〈x := e,m, t, s, r, p〉 →ε 〈stop,m[x← v], t+ 1, s, r, p〉
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Sequence
S-Seq1-Ev
〈c1,m, t, s, r, p〉 →α 〈stop,m′, t′, s′, r′, p′〉
〈c1; c2,m, t, s, r, p〉 →α 〈c2,m′, t′, s′, r′, p′〉

S-Seq2-Ev
〈c1,m, t, s, r, p〉 →α 〈c′1,m′, t′, s′, r′, p′〉 c′1 6= stop
〈c1; c2,m, t, s, r, p〉 →α 〈c′1; c2,m′, t′, s′, r′, p′〉

Recv

S-Recv-Public
s′ = {(l′, v′, t′) ∈ s, l′ = l} r′ = {(l′, v′, t′) ∈ r, l′ = l} sl(s

′, r′) = v
n = p(l) p′ = l′ 7→ min(0, p(l′)− n) Γ (x) = l′ l′ v ladv

〈x← recv(l),m, t, s, r, p〉 →A(x,v,Γ (x)) 〈stop,m[x← v], t+ n, s, {(l, v, t+ n)} ∪ r, p′〉

S-Recv-Sec
s′ = {(l′, v′, t′) ∈ s, l′ = l} r′ = {(l′, v′, t′) ∈ r, l′ = l} sl(s

′, r′) = v
n = p(l) p′ = l′ 7→ min(0, p(l′)− n) Γ (x) = l′ l′ 6v ladv

〈x← recv(l),m, t, s, r, p〉 →ε 〈stop,m[x← v], t+ n, s, {(l, v, t+ n)} ∪ r, p′〉

Send

S-Send-Pub
〈m, e〉 ⇓ v p(l) = t′ l v ladv s′ = {(l, v, t+ t′)} ∪ s
〈send(l, e),m, t, s, r, p〉 →Msent(l,t,t+t′) 〈stop,m, t+ 1, s′, r, p〉

S-Send-Sec
〈m, e〉 ⇓ v p(l) = t′ l 6v ladv s′ = {(l, v, t+ t′)} ∪ s

〈send(l, e),m, t, s, r, p〉 →ε 〈stop,m, t+ 1, s′, r, p〉

Padding

S-Pad1-Ev
〈c,m, t, s, r, p〉 →α 〈c′,m′, t′, s′, r′, p′〉

〈padr(e, l) do c,m, t, s, r, p〉 → 〈padr(v −∆t) do c′,m′, t′, s′, r′, p′′〉
c′ 6= stop

〈padr(e, l) do c,m, t, s′, r′, p〉 →α 〈padr(v −∆t) do c′,m′, t′, s′, r′, p′′〉

S-Pad2-Ev
〈c,m, t, s, r, p〉 →α 〈stop,m′, t′, s′, r′, p′〉

〈padr(e, l) do c,m, t, s, r, p〉 → 〈stop,m′, t′, s′, r′, p′′〉
〈padr(e, l) do c,m, t, s, r, p〉 →α 〈stop,m′, t′, s′, r′, p′′〉

Lemma 5 (Adequacy of the semantics with events). Let Γ be an environ-
ment, c a program and m a memory. Then 〈c,m, t, s, r, p〉 → 〈c′,m′, t′, s′, r′, p′〉
if and only if there is an event α such that 〈c,m, t, q, p〉 →α 〈c′,m′, t′, q′, p′〉.
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Proof. By examining each case. ut

Lemma 6 (Preservation of typing for auxiliary semantics). Let Γ be an
environment, pc a level, 〈c,m, t, s, r, p〉 a configuration well-formed w.r.t. Γ and
pc. Suppose this configuration takes a step

〈c,m, t, s, r, p〉 →α 〈c′,m′, t′, s′, r′, p′〉.

Then the resulting configuration 〈c′,m′, t′, s′, r′, p′〉 is also well-formed w.r.t. Γ
and pc.

Proof. Immediate from previous lemmas. ut

B.3 Bridge relation and its properties

The now introduce our main working relation of the proof – the bridge relation
between relations. Informally, two configurations are related by the bridge relation,
when the second configuration is reachable from the first one with a non-empty
event, or the second configuration is terminal.

Definition 6 (Bridge relation at level ladv). Bridge relation 〈c,m, t, s, r, p〉yn
α

〈c′,m′, t′, s′, r′, p′〉:

Bridge-stop
〈c,m, t, s, r, p〉 →ε 〈stop,m′, t′, s′, r′, p′〉
〈c,m, t, s, r, p〉y0

ε 〈stop,m′, t′, s′, r′, p′〉

Bridge-Ev
〈c,m, t, s, r, p〉 →α 〈c′,m′, t′, s′, r′, p′〉 α 6= ε

〈c,m, t, s, r, p〉y0
α 〈c′,m′, t′, s′, r′, p′〉

Bridge-Multi
c′ 6= stop 〈c,m, t, s, r, p〉 →ε 〈c′,m′, t′, s′, r′, p′〉
〈c′,m′, t′, s′, r′, p′〉yn

α 〈c′′,m′′, t′′, s′′, r′′, p′′〉
〈c,m, t, s, r, p〉yn+1

α 〈c′′,m′′, t′′, s′′, r′′, p′′〉

We now prove a number of technical lemmas about the properties of the
bridge relation.

Lemma 7 (Bridge of sequential composition). Let Γ be a typing environ-
ment, a sequential composition of two commands c1 and c2 such that 〈c1; c2,m, t, s, r, p〉yn

α

〈c′,m′, t′, s′, r′, p′〉 then one of the following holds:

1. n > 0 and there are k, m′1, s′1, r′1, p′1 and t′1 such that k < n,

〈c1,m, t, s, r, p〉yk
ε 〈stop,m′1, t′1, s′1, r′1, p′1〉

and
〈c2,m′1, t′1, s′1, r′1, p′1〉yn−k−1

α 〈c′,m′, t′, s′, r′, p′〉.
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2. α 6= ε and there is c′1 such that 〈c1,m, t, s, r, p〉yn
α 〈c′1,m′, t′, s′, r′, p′〉 and

c′ =

{
c′1; c2 if c′1 6= stop
c2 otherwise

Proof. Note that the bridge step can’t be derived from Bridge-Stop, because the
semantics forbid c1; c2 to step to stop. The proof proceeds by induction on n:

Base case n = 0:
Bridge-Ev: α 6= ε. We have 〈c1; c2,m, t, s, r, p〉 →α 〈c′,m′, t′, s′, r′, p′〉. This

can come from either:
1. S-Seq1-Ev. In this case there is c′1 = stop such that
〈c1,m, t, s, r, p〉 →α 〈c′1,m′, t′, s′, r′, p′〉.
Hence 〈c1,m, t, s, r, p〉y0

α 〈c′1,m′, t′, s′, r′, p′〉 and c′ = c2
2. S-Seq2-Ev: there is c′1 6= stop such that 〈c1,m, t, s, r, p〉 →α 〈c′1,m′, t′, s′, r′, p′〉.

Hence 〈c1,m, t, s, r, p〉y0
α 〈c′1,m′, t′, s′, r′′, p′〉 and c′ = c′1; c2.

Bridge-multi: Impossible: require n > 0

Inductive step Bridge-Ev: Impossible: require n = 0
Bridge-multi: There exists a configuration 〈c′′,m′′, t′′, s′′, r′′, p′′〉 such that
〈c1; c2,m, t, s, r, p〉 →ε 〈c′′,m′′, t′′, s′′, r′′, p′′〉 and 〈c′′,m′′, t′′, s′′, r′′, p′′〉yn−1

α

〈c′,m′, t′, s′, r′, p′〉. There are two cases: either c′′ = c′1; c2 or c′′ = c2. In
the first case, by applying the induction hypothesis to the second bridge
relation, we are in one the those two cases:
– n−1 > 0 and there are k and m′1, t′1, s′1, r′1 and p′1 such that k < n−1

and
〈c′1,m′′, t′′, s′′, r′′, p′′〉yk

ε 〈stop,m′1, t′1, s′1, r′1, p′1〉

and
〈c2,m′1, t′1sq′1, r′1, p′1〉yn−k−2

α 〈c′,m′, t′, s′, r′, p′〉.

– α 6= ε and there is c′′1 such that 〈c′1,m, t, s, r, p〉yn−1
α 〈c′′1 ,m′, t′, s′, r′, p′〉

and

c′ =

{
c′1; c2 if c′1 6= stop
c2 otherwise

In both case, by applying the rules of the bridge relation we obtain the
result.
Otherwise, we are in the first case of the theorem with k = 0

ut

Lemma 8 (Commands typed in secret are not making public assign-
ment/messages). Let Γ be a typing environment, l a security level such that
l 6v ladv and c a program such that Γ, l ` c, and two configurations such that
〈c,m, t, s, r, p〉 →α 〈c′,m′, t′, s′, r′, p′〉. Then:

1. α = ε
2. m ∼ladv m′
3. s ∼ladv s′
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4. r ∼ladv r′

Proof. By induction on c:

Case c = skip: α = ε, and no assignments, messages or modification to paddings
are made.

Case c = x := e: Γ, l ` x := e therefore l v Γ (x). Therefore Γ (x) 6v ladv: the
only applicable rule is S-Assign-Sec. Therefore α = ε.
m′ = m[x ← v] where 〈m, e〉 ⇓ v. Since Γ (x) 6v ladv, m ∼ladv m′. No
modification to messages are made.

Case c = x← recv(l′): Γ, l ` x ← recv(l′) therefore l v Γ (x). Therefore
Γ (x) 6v ladv: the only applicable rule is S-Recv-Sec. Therefore α = ε,
m ∼ladv m

′ and r ∼ladv r
′.

Case c = send(e, l′): l v l′ therefore l′ 6v ladv. The only applicable rule is S-
Send-Secret, hence α = ε. Since l′ 6@ ladv, q ∼ladv q

′, and no modifications to
messages are made.

Other cases: by applying the induction hypothesis
ut

Lemma 9 (Bridge of padded commands). Let padr(v, l, p0, v0, t0) do c be
a well-typed command, and 〈padr(v, l, p0, v0, t0) do c,m, t, s, r, p〉 a configuration.
Suppose that

〈padr(v, l, p0, v0, t0) do c,m, t, s, r, p〉yn
α 〈d,m′, t′, s′, r′, p′〉.

Then we are in one of these two cases:

1. d = stop and there exist p′′ such that p′ = l′ 7→

{
p0(l

′) + v0 − (t′ − t0) if l 6v l′

p′′(l′) otherwise
and

〈c,m, t, s, r, p〉yn
α 〈stop,m′, t′, s′, r′, p′′〉.

2. There exist v′ and c′ such that d = padr(v′, l, p0, v0, t0) do c′ and

〈c,m, t, s, r, p〉yn
α 〈c′,m′, t′, s′, r′, p′〉.

Proof. By induction on the bridge relation.

Bridge-stop: This means n = 0, α = ε, and d = stop.
Then 〈padr(v, l, p0, v0, t0) do c,m, t, s, r, p〉 →ε 〈stop,m′, t′, s′, r′, p′〉. There-
fore, the only applicable rule is S-Pad-Stop. Hence, there is p′′ such that
〈c,m, t, s, r, p〉 →ε 〈stop,m′, t′, s′, r′, p′′〉 and that verifies the above property.
Therefore, by the rule Bridge-Stop,

〈c,m, t, s, r, p〉y0
ε 〈stop,m′, t′, s′, r′, p′〉.

Bridge-ev: This means n = 0 and α 6= ε.
Then 〈padr(v, l, p0, v0, t0) do c,m, t, s, r, p〉 →α 〈d,m′, t′, s′, r′, p′〉. Therefore,
the only applicable rule are S-Pad-Stop and S-Pad-Cont.
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S-Pad-Stop: There is p′′ such that 〈c,m, t, s, r, p〉 →α 〈stop,m′, t′, s′, r′, p′′〉
and that verifies the above property. This means that d = stop.
Therefore, via the rule Bridge-Ev,

〈c,m, t, s, r, p〉y0
α 〈stop,m′, t′, s′, r′, p′〉

S-Pad-Cont Then there is c′ such that 〈c,m, t, s, r, p〉 →α 〈c′,m′, t′, s′, r′, p′〉.
Therefore, d = padr(v′, l, p0, v0, t0) do c′ with v′ a natural number, and

〈c,m, t, s, r, p〉y0
α 〈c′,m′, t′, s′, r′, p′〉.

Bridge-Multi: Then n > 0. There is 〈padr(e, l, p0) do c,m, t, s, r, p〉 →ε 〈c′′,m′′, t′′, s′′, r′′, p′′〉
with c′′ 6= stop and such that

〈c′′,m′′, t′′, s′′, r′′, p′′〉yn−1
α 〈c′,m′, t′, s′, r′, p′〉.

But c′′ = padr(v′, l, p0, v0, t0) do c(3) for some c(3) and v′. By applying the
induction hypothesis to this relation, we obtain the result.

ut

B.4 Noninterference for bridge relation

Using these technical lemmas, we can now formulate our noninterference for
bridge relation.

Theorem 2 (Noninterference for bridge). Let Γ be a typing environment,
and 〈c1,m1, t1, s1, r1, p1〉 ∼ladv 〈c2,m2, t2, s2, r2, p2〉 two configurations such that
Γ, pc ` c.

Suppose there exist α1 and α2 two events, n and n2 two natural numbers and
two configurations 〈c′1,m′1, t′1, s′1, r′1, p′1〉 and 〈c′2,m′2, t′2, s′2, r′2, p′2〉 such that:

〈c1,m1, t, s1, r1, p〉yn
α1
〈c′1,m′1, t′1, s′1, r′1, p′1〉

and
〈c2,m2, t, s2, r2, p〉yn2

α2
〈c′2,m′2, t′2, s′2, r′1, p′2〉.

Then it must be that:

1. 〈c′1,m′1, t′1, s′1, r′1, p′1〉 ∼ladv 〈c′2,m′2, t′2, s′2, r′2, p′2〉
2. α1 6= ε if and only if α2 6= epsilon

3. If α1 = A(x, v, l′), then α2 = A(x, v, l′)

4. If α1 =Msent(v, l
′, t) then α2 =Msent(v, l

′, t)

Proof. Induction on the number of steps n:

Base case n = 0: Induction on c1.
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Case c1 = skip: The only possibility is

〈skip,m1, t1, s1, r1, p1〉 →ε 〈stop,m1, t1 + 1, s1, r1, p1〉

for the first run and

〈skip,m2, t2, s2, r2, p2〉 →ε 〈stop,m2, t2 + 1, s2, r2, p2〉

for the second run.
Therefore, we have c′1 = c′2 = stop, α1 = ε = α2 and due to the
hypothesis: m′1 = m1 ∼ladv m2 = m′2, r′1 = r1 ∼ladv r2 = r′2, s′1 =
s1 ∼ladv s2 = s′2, and

∀l v ladv, p
′
1(l) + t′1 = p1(l) + t1 + 1

= p2(l) + t2 + 1 by hypothesis
= p′2(l) + t′2

Case c1 = x := e: Then c2 = c1.
We examine 〈x := e,m1, t1, s1, r1, p1〉y0

α1
〈c′1,m′1, t′1, s′1, r′1, p′1〉.

Rule Bridge-Multi: not applicable because n = 0
Rule Bridge-Stop: Then α1 = ε, and 〈x := e,m1, t1, s1, r1, p1〉 →ε

〈stop,m′1, t′1, s′1, r′1, p′1〉. This is only possible by the rule S-Assign-
Sec, therefore we have Γ (x) 6v ladv.
Now, we observe that the bridge transition for the second run must
also be produced by an assignment to secret variable x (via the same
rules). This gives us c′2 = stop and α2 = ε.
Since Γ (x) 6v ladv, the assignment to variable x does not change
memory equivalence at level ladv, hence m1 ∼ladv m

′
1. For the same

reason, m2 ∼ladv m
′
2. By transitivity, and hypothesis, m′1 ∼ladv m

′
2.

We have:
– c′1 = c′2 = stop
– α1 = α2 = ε
– m′1 ∼ladv m

′
2

– s′1 = s1 and s′2 = s2 thus s′1 ∼ladv s
′
2

– r′1 = r1 and r′2 = r2 thus r′1 ∼ladv r
′
2

– t′1 = t1 + 1 and t′2 = t2 + 1. Since p′1 = p1 and p′2 = p2, for all
l v ladv,

p′1(l) + t′1 = p1(l) + t1 + 1

= p2(l) + t2 + 1 by hypothesis
= p′2(l) + t′2.

Rule Bridge-Ev: Then α1 6= ε. This is only possible via the rule S-
Assign-Pub. Therefore Γ (x) v ladv.
Now, we observe that the bridge transition for the second run must
also be produced by an assignment to public variable x (via the same
rules).
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The program is well-typed, therefore there exists l such that Γ `
e : l and pc t l v Γ (x). Therefore, l v ladv. By the Lemma 1
of noninterference for expression, v1 = v2 where 〈m1, e〉 ⇓ v1 and
〈m2, e〉 ⇓ v2.
Hence, since public updates preserve memory equivalence, we have
that m′1 ∼ladv m

′
2.

– c′1 = c′2 = stop
– α1 = α2 = A(x, v1, Γ (x))
– m′1 ∼ladv m

′
2

– s′1 = s1 and s′2 = s2 thus s′1 ∼ ladvs
′
2

– r′1 = r1 and r′2 = r2 thus r′1 ∼ ladvr
′
2

– t′1 = t1 + 1 and t′2 = t2 + 1. Since p′1 = p1 and p′2 = p2, for all
l v ladv,

p′1(l) + t′1 = p1(l) + t1 + 1

= p2(l) + t2 + 1

= p′2(l) + t′2.

Case c1 = d1,1; d2,1: Then c2 = d1,2; d2,2 with d1,1 ∼ladv d1,2 and d2,1 ∼ladv

d2,2
We apply the lemma to the first bridge relation. We can only be in the
second case, since n = 0. There is d′1 such that 〈d1,1,m1, t1, s1, r1, p1〉y0

α

〈d′1,m′1, t′1, s′1, r′1, p′1〉 and c′1 =

{
d′1; d2,1 if d′1 6= stop
d2,1 otherwise

.

By applying the same lemma to the second bridge relation we have two
possibilities:
1. n2 > 0 and there are k, m′′2 , t′′2 , s′′2 , r′′2 and p′′2 such that k < n2 and

〈d2,1,m2, t2, s2, r2, p2〉yk
ε 〈stop,m′′2 , t′′2 , s′′2 , r′′2 , p′′2〉

and 〈d2,2,m′′2 , t′′2 , s′′2 , r′′2 , p′′2〉yn2−k−1
α2

〈c′2,m′2, t′2, s′2, r′2, p′2〉.
Applying the inner induction hypothesis on this two equations for
d1,1 and d1,2 gives us that α1 = ε. This case is impossible.

2. α2 6= ε and there is d′′1 such that 〈d1,2,m2, t2, s2, r2, p2〉yn2
α2
〈d′′1 ,m′2, t′2, s′2, r′2, p′2〉

and c′2 =

{
d′′1 ; d2,2 if d′′1 6= stop
d2,2 otherwise

.

By applying the inner hypothesis induction to d1,1 and d1,2 we obtain
that 〈d′1,m′1, t′1, s′1, r′1, p′1〉 ∼ladv 〈d′′1 ,m′2, t′2, s′2, r′2, p′2〉. Hence this is
also the case for the two configurations resulting from c1 and c2.

Case c1 = if e then c1 else c2: Not applicable because n = 0

Case c1 = while e do c′: Not applicable because n = 0

Case c1 = send(l, e): Then c1 = c2 = send(l, e).
We examine 〈send(e, l),m1, t1, s1, r1, p1〉y0

α1
〈c′1,m′1, t′1, s′1, r′1, p′1〉.

Rule Bridge-Multi: not applicable because n = 0
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Rule Bridge-Stop: Then α1 = ε and 〈send(e, l),m1, t1, s1, r1, p1〉 →ε

〈c′1,m′1, t′1, s′1, r′1, p′1〉.
This is only possible by applying the rule S-Send-Secret, therefore
we have l 6⊆ ladv. Therefore, the addition of the message to the set
does not change message sent equivalence: s1 ∼ladv s

′
1.

Now, we observe that the bridge transition for the second run must
also be produced by a message sent at level l. Thus, s2 ∼ladv s

′
2. By

transitivity, s′1 ∼ladv s
′
2. Both final commands are stop, and in both

cases the message received queues and the memory are not modified,
so their equivalence holds.
Last, t′1 = t1 +1 and t′2 = t2 +1. Paddings are not modified therefore
p′1 + t′1 = p′2 + t′2.
The final configurations are low-equivalent at security level ladv.

Rule Bridge-Ev: Then 〈send(e, l),m1, t1, s1, r1, p1〉 →α1
〈c′1,m′1, t′1, s′1, r′1, p′1〉

and α1 6= ε. The only applicable rule is S-Send-Pub, therefore l v ladv.
Now we observe that the bridge transition for the second run must
also be produced by a message sent to the same public security level.
The program is well-typed, therefore there exists l′ such that Γ ` e : l′
and pc t l′ v l v ladv, therefore l′ v ladv.
By the lemma of noninterference for expressions, v1 = v2 where
〈m1, e〉 ⇓ v1 and 〈m2, e〉 ⇓ v2.
Hence, we have s′1 ∼ladv s

′
2.

Both final commands are stop, the memories and the received mes-
sages set are not modified.
Last, exactly as before, t′1 = t1 + 1 and t′2 = t2 + 1.
The final configurations are low-equivalent at security level ladv and
the events α1 and α2 are equal.

Case c = x← recv(l):
We examine the rule 〈x← recv(l),m1, t1, s1, r1, p1〉y0

α1
〈c′1,m′1, t′1, s′1, r′1, p′1〉.

Rule Bridge-Multi: not applicable because n = 0.
Rule Bridge-Stop:

Then c′1 = stop, α1 = ε and

〈x← recv(l),m1, t1, s1, r1, p1〉 →ε 〈stop,m′1, t′1, s′1, r′1, p′1〉.

The only applicable rule is S-Recv-Sec. Therefore Γ (x) 6v ladv. Hence,
the second run must also be produced by the same rules.
Hence, c′1 = c′2 = stop and α1 = α2 = ε.
Since Γ (x) 6v ladv, m′1 = m1[x← v1], and m′2 = m2[x← v2], we have
that m′1 ∼ladv m1 and m′2 ∼ladv m2. By transitivity of the relation,
and by hypothesis, m′1 ∼ladv m

′
2.

For the same reason, r′1 ∼ladv r1 and r′2 ∼ladv r2, and then r′1 ∼ladv r
′
2.

s′1 = s1 and s′2 = s2 thus by hypothesis s′1 ∼ladv s
′
2.

Let l′ v ladv. Let us prove that p′1(l′)+t′1 = p′2(l
′)+t′2. Let us consider

four cases:
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– p1(l) < 0 and p2(l) < 0. Then p′1(l′) + t′1 = p1(l
′) + t1 + 1 and

p′2(l
′) + t′2 = p2(l

′) + t2 + 1. We conclude by hypothesis.
– p1(l) < 0 and p2(l) ≥ 0. Then p′1(l′) + t′1 = p1(l

′) + t1 + 1. There
are two cases:
1. l v l′. Then p′2(l′) = 0, and t′2 = t2 + p2(l) + 1. Therefore,

p′1(l
′) + t′1 = p1(l

′) + t1 + 1

= p2(l
′) + t2 + 1 by hypothesis

= p′2(l
′) + t′2

2. l 6v l′. Then p′2(l
′) = p2(l

′) − p2(l), and t′2 = t2 + p2(l) + 1.
Therefore,

p′1(l
′) + t′1 = p1(l

′) + t1 + 1

= p2(l
′) + t2 + 1 by hypothesis

= p2(l
′)− p2(l) + t2 + p2(l) + 1

= p2(l
′)− p2(l) + t′2

– The symmetric case p1(l) ≥ 0 and p2(l) < 0 is similar
– p1(l) ≥ 0 and p2(l) ≥ 0.

There are two cases:
• Suppose first that l v l′. Then p′1(l′) = 0 = p′2(l

′). Therefore,

p′1(l
′) + t′1 = 0 + t1 + p1(l) by defintion of t′1

= 0 + t2 + p2(l) because l v ladv and by hypothesis
= p′2(l

′) + t′2

• Otherwise, suppose that l 6v l′. Then p′1(l′) = p1(l
′)− p1(l) and

p′2(l
′) = p2(l

′)− p2(l). Then,

p′1(l
′) + t′1 = p1(l

′)− p1(l) + t1 + p1(l) by defintion of t′1
= p1(l

′) + t1

= p2(l
′) + t2 by hypothesis

= p2(l
′)− p2(l) + t2 + p2(l)

= p′2(l
′) + t′2

Rule Bridge-Ev:
Then α1 6= ε. The only applicable rule is S-Recv-Pub, thus Γ (x) v
ladv, c′1 = stop, α1 = A(x, v1, Γ (x)) with

v1 = sl({(v′, l′, t′) ∈ s1 | l = l′}, {(v′, l′, t′) ∈ r1 | l = l′})

and
〈c1,m1, t1, s1, r1, p1〉 →α1 〈stop,m′1, t′1, s′1, r′1, p′1〉.

Since Γ (x) v ladv, the second run must also be produced by the same
rules.
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Hence, c′1 = c′2 = stop and α2 = A(x, v2, Γ (x)) with

v2 = sl({(v′, l′, t′) ∈ s2 | l = l′}, {(v′, l′, t′) ∈ r2 | l = l′}).

Since Γ (x) v ladv, and since the program is well-typed, l v ladv.
Therefore, v1 = v2 and α1 = α2.
Now, m′1 = m1[x ← v1] and m′2 = m2[x ← v1]. Since m1 ∼ladv m2,
m′1 ∼ladv m

′
2.

For the same reason, r′1 ∼ladv r
′
2.

s′1 = s1 and s′2 = s2 thus s′1 ∼ladv s
′
2.

Let l′ v ladv. Let us prove that p′1(l′)+t′1 = p′2(l
′)+t′2. Let us consider

four cases:
– p1(l) < 0 and p2(l) < 0. Then p′1(l′) + t′1 = p1(l

′) + t1 + 1 and
p′2(l

′) + t′2 = p2(l
′) + t2 + 1. We conclude by hypothesis.

– p1(l) < 0 and p2(l) ≥ 0. Then p′1(l′) + t′1 = p1(l
′) + t1 + 1. There

are two cases:
1. l v l′. Then p′2(l′) = 0, and t′2 = t2 + p2(l) + 1. Therefore,

p′1(l
′) + t′1 = p1(l

′) + t1 + 1

= p2(l
′) + t2 + 1 by hypothesis

= p′2(l
′) + t′2

2. l 6v l′. Then p′2(l
′) = p2(l

′) − p2(l), and t′2 = t2 + p2(l) + 1.
Therefore,

p′1(l
′) + t′1 = p1(l

′) + t1 + 1

= p2(l
′) + t2 + 1 by hypothesis

= p2(l
′)− p2(l) + t2 + p2(l) + 1

= p2(l
′)− p2(l) + t′2

– The symmetric case p1(l) ≥ 0 and p2(l) < 0 is similar
– p1(l) ≥ 0 and p2(l) ≥ 0.

There are two cases:
• Suppose first that l v l′. Then p′1(l′) = 0 = p′2(l

′). Therefore,

p′1(l
′) + t′1 = 0 + t1 + p1(l) by defintion of t′1

= 0 + t2 + p2(l) because l v ladv and by hypothesis
= p′2(l

′) + t′2

• Otherwise, suppose that l 6v l′. Then p′1(l′) = p1(l
′)− p1(l) and

p′2(l
′) = p2(l

′)− p2(l). Then,

p′1(l
′) + t′1 = p1(l

′)− p1(l) + t1 + p1(l) by defintion of t′1
= p1(l

′) + t1

= p2(l
′) + t2 by hypothesis

= p2(l
′)− p2(l) + t2 + p2(l)

= p′2(l
′) + t′2
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Case c1 = padr(v, l, p0,1, v0,1, t0,1) do d1:
Therefore c2 = padr(v, l, p0,2, v0,2, t0,2) do d2 with d1 ∼ladv d2.
We apply the lemma regarding the inner bridge relation for paddings to
both bridge relation:
For the first relation, we obtain that we are in one of two cases:
1. c′1 = stop and there exist p′′1 such that

〈d1,m1, t1, s1, r1, p1〉y0
α1
〈stop,m′1, t′1, s′1, r′1, p′′1〉.

2. There exist e′ and d′1 6= stop such that c′1 = padr(v′1, l, p0,1, v0,1, t0,1) do d
′
1

and
〈d1,m1, t1, s1, r1, p1〉y0

α1
〈d′1,m′1, t′1, s′1, r′1, p′1〉.

For the second relation, we obtain that we are in one of two cases:
1. c′2 = stop and there exist p′′2 such that

〈d2,m2, t2, s2, r2, p2〉yn2
α2
〈stop,m′2, t′2, s′2, r′2, p′′2〉.

2. There exist e′ and d′2 6= stop such that c′2 = padr(v′2, l, p0,2, v0,2, t0,2) do d
′
2

and
〈d2,m2, t2, s2, r2, p2〉yn2

α2
〈d′2,m′2, t′2, s′2, r′2, p′2〉.

If we apply the inner induction hypothesis to case 1.2. (resp 2.1.) we
obtain that stop = d′1 6= stop (resp. stop = d′2 6= stop) which is
impossible.
Let us consider the other cases:
Case 1.1: By applying the inner induction hypothesis to d1 and d2, we

get that for all l′ v ladv, t′1 + p′′1(l
′) = t′2 + p′′2(l

′), and α1 = α2.
We also have that

p′1 = l′ 7→

{
p0,1(l

′) + v0,1 − (t′1 − t0,1) if l 6v l′

p′′1(l
′) otherwise

and

p′2 = l′ 7→

{
p0,2(l

′) + v0,2 − (t′2 − t0,2) if l 6v l′

p′′2(l
′) otherwise

.

Let l′ v ladv. Suppose first that l v l′. Then p′1(l
′) = p′′1(l

′) and
p′2(l

′) = p′′2(l
′).

Hence, t′1 + p′1(l
′) = t′2 + p′2(l

′).

Otherwise, suppose that l 6v l′. Then p′1(l′) = p0,1(l
′)+v0,1−(t′1−t0,1)

therefore

p′1(l
′) + t′1 = p0,1(l

′) + v0,1 + t0,1

= p0,2(l
′) + v0,2 + t0,2 by definition of ∼ladv for commands

= p′2(l
′) + t′2
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Case 2.2: By applying the inner induction hypothesis to d1 and d2 we
obtain the result immediatly.
We have indeed c′1 ∼ladv c

′
2 by definition of ∼ladv .

Case c1 = pad(e, l) do c: Not applicable because n = 0
Inductive case: by induction on the structure of c1:

Case c1 = skip: not applicable because n > 0
Case c1 = x := e: not applicable because n > 0
Case c1 = d1,1; d2,1: Then c2 = d1,2; d2,2 with d1,1 ∼ladv d1,2 and d2,1 ∼ladv

d2,2.
By applying the lemma for sequential composition, we obtain the follow-
ing:
1. For the first run we have two possibilities:

(a) n1 > 0 and there are k1, m′′1 , t′′1 , s′′1 , r′′1 and p′′1 such that k1 < n
and

〈d1,1,m1, t1, s1, r1, p1〉yk1
ε 〈stop,m′′1 , t′′1 , s′′1 , r′′1 , p′′1〉 (1)

and

〈d2,1,m′′1 , t′′1 , s′′1 , r′′1 , p′′1〉yn−k1−1
α1

〈c′1,m′1, t′1, s′1, r′1, p′1〉 (2)

(b) α1 6= ε and ther eis d′′1 such that:

〈d1,1,m1, t1, s1, r1, p1〉yn
α1
〈d′′1 ,m′1, t′1, s′1, r′1, p′1〉 (3)

and c′1 =

{
d′′1 ; d2,1 if d′′2 6= stop
d2,1 otherwise

.

2. For the second run we have two possibilities:
(a) n2 > 0 and there are k2, m′′2 , t′′2 , s′′2 , r′′2 and p′′2 such that k2 < n2

and

〈d1,2,m2, t2, s2, r2, p2〉yk2
ε 〈stop,m′′2 , t′′2 , s′′2 , r′′2 , p′′2〉 (4)

and

〈d2,2,m′′2 , t′′2 , s′′2 , r′′2 , p′′2〉yn2−k2−1
α2

〈c′2,m′2, t′2, s′2, r′2, p′2〉 (5)

(b) α2 6= ε and there is d′′2 such that:

〈d1,2,m2, t2, s2, r2, p2〉yn
α2
〈d′′2 ,m′2, t′2, s′2, r′2, p′2〉 (6)

and c′2 =

{
d′′1 ; d2,2 if d′′2 6= stop
d2,2 otherwise

.

Let us study all four cases:
Case 1a + 2b and 1b + 2a: by applying the innder induction hypoth-

esis we obtain that α2 = ε in the first case, and α1 = ε in the second:
these cases are impossible.
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Case 1a + 2a: We apply the induction hypothesis to d1,1 and d1,2,
which give us the equivalence of the two intermediary configuration,
then to d2,1 and d2,2 which gives us the equivalence of the two final
configuration.

Case 1b + 2b: We are done immediatly by applying the inner induction
hypothesis to d1,1 and d1,2.

Case c1 = if e then d1 else d′1:
Then c2 = if e then d2 else d′2 with d1 ∼ladv d2 and d′1 ∼ladv d

′
2

By T-If, Γ, pc ` d1, Γ, pc ` d′1, Γ, pc ` d2, Γ, pc ` d′2 and there is l such
that Γ ` e : l and l v pc. If l v ladv, then by the lemma of noninterference
for expressions, both runs take the same branch, and we are done by the
inner induction hypothesis.
Otherwise, if l 6v ladv, then pc 6v ladv, and by the lemma regarding the
update in secret context, m1 ∼l m′1 and m2 ∼l m′2. By transitivity of ∼l,
m′1 ∼l m′2 This is also the case for the messages.

Case c = while e do c′: Immediate with the outer induction hypothesis
Case c = send(l′, e): not applicable because n > 0
Case c = x← recv(l′): not applicable because n > 0
Case c1 = padr(v, l, p0,1, v0,1, t0,1) do d1:

Therefore c2 = padr(v, l, p0,2, v0,2, t0,2) do d2 with d1 ∼ladv d2.
We apply the lemma regarding the inner bridge relation for paddings to
both bridge relation:
For the first relation, we obtain that we are in one of two cases:
1. c′1 = stop and there exist p′′1 such that

〈d1,m1, t1, s1, r1, p1〉yn1
α1
〈stop,m′1, t′1, s′1, r′1, p′′1〉.

2. There exist e′ and d′1 6= stop such that c′1 = padr(v′1, l, p0,1, v0,1, t0,1) do d
′
1

and
〈d1,m1, t1, s1, r1, p1〉yn1

α1
〈d′1,m′1, t′1, s′1, r′1, p′1〉.

For the second relation, we obtain that we are in one of two cases:
1. c′2 = stop and there exist p′′2 such that

〈d2,m2, t2, s2, r2, p2〉yn2
α2
〈stop,m′2, t′2, s′2, r′2, p′′2〉.

2. There exist e′ and d′2 6= stop such that c′2 = padr(v′2, l, p0,2, v0,2, t0,2) do d
′
2

and
〈d2,m2, t2, s2, r2, p2〉yn2

α2
〈d′2,m′2, t′2, s′2, r′2, p′2〉.

If we apply the inner induction hypothesis to case 1.2. (resp 2.1.) we
obtain that stop = d′1 6= stop (resp. stop = d′2 6= stop) which is
impossible.
Let us consider the other cases:
Case 1.1: By applying the inner induction hypothesis to d1 and d2, we

get that for all l′ v ladv, t′1 + p′′1(l
′) = t′2 + p′′2(l

′), and α1 = α2.
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We also have that

p′1 = l′ 7→

{
p0,1(l

′) + v0,1 − (t′1 − t0,1) if l 6v l′

p′′1(l
′) otherwise

and

p′2 = l′ 7→

{
p0,2(l

′) + v0,2 − (t′2 − t0,2) if l 6v l′

p′′2(l
′) otherwise

.

Let l′ v ladv. Suppose first that l v l′. Then p′1(l
′) = p′′1(l

′) and
p′2(l

′) = p′′2(l
′).

Hence, t′1 + p′1(l
′) = t′2 + p′2(l

′).

Otherwise, suppose that l 6v l′. Then p′1(l′) = p0,1(l
′)+v0,1−(t′1−t0,1)

therefore

p′1(l
′) + t′1 = p0,1(l

′) + v0,1 + t0,1

= p0,2(l
′) + v0,2 + t0,2 by definition of ∼ladv for commands

= p′2(l
′) + t′2

Case 2.2: By applying the inner induction hypothesis to d1 and d2 we
obtain the result immediatly.
We have indeed c′1 ∼ladv c

′
2 by definition of ∼ladv .

Case c = pad(e, l) do d: The only applicable rule is Bridge-Multi.
Since the program is well-typed, there exists l′ such that Γ ` e : l′. If
l′ v ladv, then by noninterference for the expression e, and then by
the outer induction hypothesis, we obtain the result.
Otherwise, l′ 6v ladv. Then, pc t l 6v ladv, and since Γ, pc t l ` d, and
since commands typed in secret context do not make public events,
we obtain the result.

ut

B.5 Proof of Theorem 1

A final technical piece that we need to put in place before proving Theorem 1 is
that our bridge relation is adequate w.r.t. the original semantics.

Lemma 10 (Bridge adequacy). Given a program c such that Γ, pc ` c and
m, s, r, t and p such that 〈c,m, t, s, r, p〉 →n 〈stop,m′′, t′′, s′′, r′′, p′′〉.

Then, there are c′, m′, t′, s′, r′, p′, α, k and n′ such that

〈c,m, t, s, r, p〉yk
α 〈c′,m′, t′, s′, r′, p′〉

and 〈c′,m′, t′, s′, r′, p′〉 →n′ 〈stop,m′′, t′′, s′′, r′′, p′′ where k + n′ + 1 = n.
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Proof. By induction on n. The base case n = 1 is trivial. For the inductive case,
assume that the lemma holds for n− 1 steps, and consider the case of n steps.

We have that 〈c,m, t, s, r, p〉 → 〈c′,m′, t′, s′, r′, p′〉 and 〈c′,m′, t′, s′, r′, p′〉 →n−1

〈stop,m′′, t′′, s′′, r′′, p′′〉. There is some α such that 〈c,m, t, s, r, p〉 →α 〈c′,m′, t′, s′, r′, p′〉.
We consider two possibilities:

Case α 6= ε: We are done by Bridge-Public, with k = 0 and n′ = n− 1
Case α = ε: We have two cases:

1. n-1 = 0. Then by bridge-stop we are done, and k = 0 and n′ = n− 1.
2. n-1 > 0. Then c′ 6= stop. By the induction hypothesis, and bridge-multi

we have the result.
ut

We now revisit our main theorem.
Restatement of Theorem 1 (Noninterference) Let c be such that Γ, pc ` c.
Then for all 〈c,m1, t1, s1, r1, p1〉 ∼ladv 〈c,m2, t2, s2, r2, p2〉 such that:

〈c,m1, t1, s1, r1, p1〉 →n1 〈stop,m′1, t′1, s′1, r′1, p′1〉

and
〈c,m2, t2, s2, r2, p2〉 →n2 〈stop,m′2, t′2, s′2, r′2, p′2〉

it holds that:

〈stop,m′1, t′1, s′1, r′1, p′1〉 ∼ladv 〈stop,m′2, t′2, s′2, r′2, p′2〉

Proof. By strong induction on n1:

Base case n1 = 0: Immediate.
Inductive case: By bridge adequacy, bridge noninterference theorem, and the

induction hypothesis.
ut
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